The More You See in 2D, the More You Perceive in 3D
- URL: http://arxiv.org/abs/2404.03652v1
- Date: Thu, 4 Apr 2024 17:59:40 GMT
- Title: The More You See in 2D, the More You Perceive in 3D
- Authors: Xinyang Han, Zelin Gao, Angjoo Kanazawa, Shubham Goel, Yossi Gandelsman,
- Abstract summary: SAP3D is a system for 3D reconstruction and novel view synthesis from an arbitrary number of unposed images.
We show that as the number of input images increases, the performance of our approach improves.
- Score: 32.578628729549145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Humans can infer 3D structure from 2D images of an object based on past experience and improve their 3D understanding as they see more images. Inspired by this behavior, we introduce SAP3D, a system for 3D reconstruction and novel view synthesis from an arbitrary number of unposed images. Given a few unposed images of an object, we adapt a pre-trained view-conditioned diffusion model together with the camera poses of the images via test-time fine-tuning. The adapted diffusion model and the obtained camera poses are then utilized as instance-specific priors for 3D reconstruction and novel view synthesis. We show that as the number of input images increases, the performance of our approach improves, bridging the gap between optimization-based prior-less 3D reconstruction methods and single-image-to-3D diffusion-based methods. We demonstrate our system on real images as well as standard synthetic benchmarks. Our ablation studies confirm that this adaption behavior is key for more accurate 3D understanding.
Related papers
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild.
Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture.
We propose bridging the gap between 2D and 3D diffusion models to address this limitation.
arXiv Detail & Related papers (2024-10-12T10:14:11Z) - SpaRP: Fast 3D Object Reconstruction and Pose Estimation from Sparse Views [36.02533658048349]
We propose a novel method, SpaRP, to reconstruct a 3D textured mesh and estimate the relative camera poses for sparse-view images.
SpaRP distills knowledge from 2D diffusion models and finetunes them to implicitly deduce the 3D spatial relationships between the sparse views.
It requires only about 20 seconds to produce a textured mesh and camera poses for the input views.
arXiv Detail & Related papers (2024-08-19T17:53:10Z) - Isotropic3D: Image-to-3D Generation Based on a Single CLIP Embedding [16.50466940644004]
We present Isotropic3D, an image-to-3D generation pipeline that takes only an image CLIP embedding as input.
Isotropic3D allows the optimization to be isotropic w.r.t. the azimuth angle by solely resting on the SDS loss.
arXiv Detail & Related papers (2024-03-15T15:27:58Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
We present a new framework Sculpt3D that equips the current pipeline with explicit injection of 3D priors from retrieved reference objects without re-training the 2D diffusion model.
Specifically, we demonstrate that high-quality and diverse 3D geometry can be guaranteed by keypoints supervision through a sparse ray sampling approach.
These two decoupled designs effectively harness 3D information from reference objects to generate 3D objects while preserving the generation quality of the 2D diffusion model.
arXiv Detail & Related papers (2024-03-14T07:39:59Z) - X-Dreamer: Creating High-quality 3D Content by Bridging the Domain Gap Between Text-to-2D and Text-to-3D Generation [61.48050470095969]
X-Dreamer is a novel approach for high-quality text-to-3D content creation.
It bridges the gap between text-to-2D and text-to-3D synthesis.
arXiv Detail & Related papers (2023-11-30T07:23:00Z) - WildFusion: Learning 3D-Aware Latent Diffusion Models in View Space [77.92350895927922]
We propose WildFusion, a new approach to 3D-aware image synthesis based on latent diffusion models (LDMs)
Our 3D-aware LDM is trained without any direct supervision from multiview images or 3D geometry.
This opens up promising research avenues for scalable 3D-aware image synthesis and 3D content creation from in-the-wild image data.
arXiv Detail & Related papers (2023-11-22T18:25:51Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
We introduce a novel universal 3D pre-training framework designed to facilitate the acquisition of efficient 3D representation.
For the first time, PonderV2 achieves state-of-the-art performance on 11 indoor and outdoor benchmarks, implying its effectiveness.
arXiv Detail & Related papers (2023-10-12T17:59:57Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3D is a text-and-image-guided generative model for 3D avatar generation based on diffusion models.
Our framework produces topologically and structurally correct geometry and high-resolution textures.
arXiv Detail & Related papers (2023-08-18T17:55:47Z) - ARTIC3D: Learning Robust Articulated 3D Shapes from Noisy Web Image
Collections [71.46546520120162]
Estimating 3D articulated shapes like animal bodies from monocular images is inherently challenging.
We propose ARTIC3D, a self-supervised framework to reconstruct per-instance 3D shapes from a sparse image collection in-the-wild.
We produce realistic animations by fine-tuning the rendered shape and texture under rigid part transformations.
arXiv Detail & Related papers (2023-06-07T17:47:50Z) - DreamSparse: Escaping from Plato's Cave with 2D Frozen Diffusion Model
Given Sparse Views [20.685453627120832]
Existing methods often struggle with producing high-quality results or necessitate per-object optimization in such few-view settings.
DreamSparse is capable of synthesizing high-quality novel views for both object and scene-level images.
arXiv Detail & Related papers (2023-06-06T05:26:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.