Mitigating analytical variability in fMRI results with style transfer
- URL: http://arxiv.org/abs/2404.03703v2
- Date: Mon, 16 Sep 2024 08:43:13 GMT
- Title: Mitigating analytical variability in fMRI results with style transfer
- Authors: Elodie Germani, Camille Maumet, Elisa Fromont,
- Abstract summary: We make the assumption that pipelines used to compute fMRI statistic maps can be considered as a style component.
We propose to use different generative models, among which, Generative Adversarial Networks (GAN) and Diffusion Models (DM) to convert statistic maps across different pipelines.
- Score: 0.9217021281095907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel approach to improve the reproducibility of neuroimaging results by converting statistic maps across different functional MRI pipelines. We make the assumption that pipelines used to compute fMRI statistic maps can be considered as a style component and we propose to use different generative models, among which, Generative Adversarial Networks (GAN) and Diffusion Models (DM) to convert statistic maps across different pipelines. We explore the performance of multiple GAN frameworks, and design a new DM framework for unsupervised multi-domain styletransfer. We constrain the generation of 3D fMRI statistic maps using the latent space of an auxiliary classifier that distinguishes statistic maps from different pipelines and extend traditional sampling techniques used in DM to improve the transition performance. Our experiments demonstrate that our proposed methods aresuccessful: pipelines can indeed be transferred as a style component, providing animportant source of data augmentation for future medical studies.
Related papers
- MRI Parameter Mapping via Gaussian Mixture VAE: Breaking the Assumption of Independent Pixels [3.720246718519987]
We introduce and demonstrate a new paradigm for quantitative parameter mapping in MRI.
We propose a self-supervised deep variational approach that breaks the assumption of independent pixels.
Our approach can hence support the clinical adoption of parameter mapping methods such as dMRI and qMRI.
arXiv Detail & Related papers (2024-11-16T11:11:36Z) - Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - JUMP: A joint multimodal registration pipeline for neuroimaging with
minimal preprocessing [1.3549498237473223]
We present a pipeline for unbiased and robust registration of neuroimaging modalities with minimal pre-processing.
The pipeline currently works with structural MRI, resting state fMRI and amyloid PET images.
We show the predictive power of the derived biomarkers using in a case-control study and study the cross-modal relationship between different image modalities.
arXiv Detail & Related papers (2024-01-25T15:40:19Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Robust Fiber ODF Estimation Using Deep Constrained Spherical
Deconvolution for Diffusion MRI [7.9283612449524155]
A common practice to model the measured DW-MRI signal is via fiber orientation distribution function (fODF)
measurement variabilities (e.g., inter- and intra-site variability, hardware performance, and sequence design) are inevitable during the acquisition of DW-MRI.
Most existing model-based methods (e.g., constrained spherical deconvolution (CSD)) and learning based methods (e.g., deep learning (DL)) do not explicitly consider such variabilities in fODF modeling.
We propose a novel data-driven deep constrained spherical deconvolution method to
arXiv Detail & Related papers (2023-06-05T14:06:40Z) - f-DM: A Multi-stage Diffusion Model via Progressive Signal
Transformation [56.04628143914542]
Diffusion models (DMs) have recently emerged as SoTA tools for generative modeling in various domains.
We propose f-DM, a generalized family of DMs which allows progressive signal transformation.
We apply f-DM in image generation tasks with a range of functions, including down-sampling, blurring, and learned transformations.
arXiv Detail & Related papers (2022-10-10T18:49:25Z) - Pipeline-Invariant Representation Learning for Neuroimaging [5.502218439301424]
We evaluate how preprocessing pipeline selection can impact the downstream performance of a supervised learning model.
We propose two pipeline-invariant representation learning methodologies, MPSL and PXL, to improve robustness in classification performance.
These results suggest that our proposed models can be applied to mitigate pipeline-related biases, and to improve prediction robustness in brain-phenotype modeling.
arXiv Detail & Related papers (2022-08-27T02:34:44Z) - Mode decomposition-based time-varying phase synchronization for fMRI
Data [0.0]
One way to assess the relationship between signals from different brain regions is to measure their phase synchronization (PS) across time.
This requires the textita priori choice of type and cut-off frequencies for the bandpass filter needed to perform the analysis.
Here we explore alternative approaches based on the use of various mode decomposition (MD) techniques that circumvent this issue.
arXiv Detail & Related papers (2022-03-26T01:04:28Z) - A Variational Bayesian Approach to Learning Latent Variables for
Acoustic Knowledge Transfer [55.20627066525205]
We propose a variational Bayesian (VB) approach to learning distributions of latent variables in deep neural network (DNN) models.
Our proposed VB approach can obtain good improvements on target devices, and consistently outperforms 13 state-of-the-art knowledge transfer algorithms.
arXiv Detail & Related papers (2021-10-16T15:54:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.