A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis
- URL: http://arxiv.org/abs/2404.03838v2
- Date: Thu, 11 Apr 2024 00:13:05 GMT
- Title: A Block-Coordinate Descent EMO Algorithm: Theoretical and Empirical Analysis
- Authors: Benjamin Doerr, Joshua Knowles, Aneta Neumann, Frank Neumann,
- Abstract summary: We consider whether conditions exist under which block-coordinate descent is efficient in evolutionary multi-objective optimization.
We propose a block-coordinate version of GSEMO and compare its running time to the standard GSEMO algorithm.
- Score: 17.89683724761454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider whether conditions exist under which block-coordinate descent is asymptotically efficient in evolutionary multi-objective optimization, addressing an open problem. Block-coordinate descent, where an optimization problem is decomposed into $k$ blocks of decision variables and each of the blocks is optimized (with the others fixed) in a sequence, is a technique used in some large-scale optimization problems such as airline scheduling, however its use in multi-objective optimization is less studied. We propose a block-coordinate version of GSEMO and compare its running time to the standard GSEMO algorithm. Theoretical and empirical results on a bi-objective test function, a variant of LOTZ, serve to demonstrate the existence of cases where block-coordinate descent is faster. The result may yield wider insights into this class of algorithms.
Related papers
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
We propose an evolutionary algorithm for solving large-scale multiobjective optimization problems based on Monte Carlo tree search.
The proposed method samples the decision variables to construct new nodes on the Monte Carlo tree for optimization and evaluation.
It selects nodes with good evaluation for further search to reduce the performance sensitivity caused by large-scale decision variables.
arXiv Detail & Related papers (2023-04-08T17:15:49Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Enhanced Opposition Differential Evolution Algorithm for Multimodal
Optimization [0.2538209532048866]
Most of the real-world problems are multimodal in nature that consists of multiple optimum values.
Classical gradient-based methods fail for optimization problems in which the objective functions are either discontinuous or non-differentiable.
We have proposed an algorithm known as Enhanced Opposition Differential Evolution (EODE) algorithm to solve the MMOPs.
arXiv Detail & Related papers (2022-08-23T16:18:27Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Benchmarking Meta-heuristic Optimization [0.0]
Many meta-heuristic algorithms are very efficient when solving nonlinear functions.
A meta-heuristic algorithm is a problem-independent technique that can be applied to a broad range of problems.
arXiv Detail & Related papers (2020-07-27T12:25:31Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOS is a global optimization algorithm for constrained and unconstrained problems of real-valued variables.
It implements a number of improvements to the well-known Differential Evolution (DE) algorithm.
Results prove that EOSis capable of achieving increased performance compared to state-of-the-art single-population self-adaptive DE algorithms.
arXiv Detail & Related papers (2020-07-09T10:19:22Z) - Gumbel-softmax-based Optimization: A Simple General Framework for
Optimization Problems on Graphs [5.486093983007419]
We propose a simple, fast, and general algorithm framework based on advanced automatic differentiation technique empowered by deep learning frameworks.
High-quality solutions can be obtained with much less time consuming compared to traditional approaches.
arXiv Detail & Related papers (2020-04-14T14:11:00Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.