The Low-Degree Hardness of Finding Large Independent Sets in Sparse Random Hypergraphs
- URL: http://arxiv.org/abs/2404.03842v2
- Date: Sat, 6 Jul 2024 12:41:13 GMT
- Title: The Low-Degree Hardness of Finding Large Independent Sets in Sparse Random Hypergraphs
- Authors: Abhishek Dhawan, Yuzhou Wang,
- Abstract summary: We show that the class of low-degree algorithms can find independent sets of density $left(fraclog d(r-1)dright)1/(r-1)$ but no larger.
While the graph case has been extensively studied, this work is the first to consider statistical-computational gaps of optimization problems on random hypergraphs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the algorithmic task of finding large independent sets in Erdos-Renyi $r$-uniform hypergraphs on $n$ vertices having average degree $d$. Krivelevich and Sudakov showed that the maximum independent set has density $\left(\frac{r\log d}{(r-1)d}\right)^{1/(r-1)}$. We show that the class of low-degree polynomial algorithms can find independent sets of density $\left(\frac{\log d}{(r-1)d}\right)^{1/(r-1)}$ but no larger. This extends and generalizes earlier results of Gamarnik and Sudan, Rahman and Virag, and Wein on graphs, and answers a question of Bal and Bennett. We conjecture that this statistical-computational gap holds for this problem. Additionally, we explore the universality of this gap by examining $r$-partite hypergraphs. A hypergraph $H=(V,E)$ is $r$-partite if there is a partition $V=V_1\cup\cdots\cup V_r$ such that each edge contains exactly one vertex from each set $V_i$. We consider the problem of finding large balanced independent sets (independent sets containing the same number of vertices in each partition) in random $r$-partite hypergraphs with $n$ vertices in each partition and average degree $d$. We prove that the maximum balanced independent set has density $\left(\frac{r\log d}{(r-1)d}\right)^{1/(r-1)}$ asymptotically. Furthermore, we prove an analogous low-degree computational threshold of $\left(\frac{\log d}{(r-1)d}\right)^{1/(r-1)}$. Our results recover and generalize recent work of Perkins and the second author on bipartite graphs. While the graph case has been extensively studied, this work is the first to consider statistical-computational gaps of optimization problems on random hypergraphs. Our results suggest that these gaps persist for larger uniformities as well as across many models. A somewhat surprising aspect of the gap for balanced independent sets is that the algorithm achieving the lower bound is a simple degree-1 polynomial.
Related papers
- Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - On the Unlikelihood of D-Separation [69.62839677485087]
We provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist.
For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case.
For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
arXiv Detail & Related papers (2023-03-10T00:11:18Z) - Planted Bipartite Graph Detection [13.95780443241133]
We consider the task of detecting a hidden bipartite subgraph in a given random graph.
Under the null hypothesis, the graph is a realization of an ErdHosR'enyi random graph over $n$ with edge density $q$.
Under the alternative, there exists a planted $k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$.
arXiv Detail & Related papers (2023-02-07T18:18:17Z) - Near-optimal fitting of ellipsoids to random points [68.12685213894112]
A basic problem of fitting an ellipsoid to random points has connections to low-rank matrix decompositions, independent component analysis, and principal component analysis.
We resolve this conjecture up to logarithmic factors by constructing a fitting ellipsoid for some $n = Omega(, d2/mathrmpolylog(d),)$.
Our proof demonstrates feasibility of the least squares construction of Saunderson et al. using a convenient decomposition of a certain non-standard random matrix.
arXiv Detail & Related papers (2022-08-19T18:00:34Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Fast Computation of Generalized Eigenvectors for Manifold Graph
Embedding [38.902986549367434]
We leverage existing fast extreme eigenvector computation algorithms for speedy execution.
Our embedding is among the fastest in the literature, while producing the best clustering performance for manifold graphs.
arXiv Detail & Related papers (2021-12-15T03:45:39Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Convergence of Graph Laplacian with kNN Self-tuned Kernels [14.645468999921961]
Self-tuned kernel adaptively sets a $sigma_i$ at each point $x_i$ by the $k$-nearest neighbor (kNN) distance.
This paper proves the convergence of graph Laplacian operator $L_N$ to manifold (weighted-)Laplacian for a new family of kNN self-tuned kernels.
arXiv Detail & Related papers (2020-11-03T04:55:33Z) - Optimal Low-Degree Hardness of Maximum Independent Set [93.59919600451487]
We study the algorithmic task of finding a large independent set in a sparse ErdHos-R'enyi random graph.
We show that the class of low-degree algorithms can find independent sets of half-optimal size but no larger.
arXiv Detail & Related papers (2020-10-13T17:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.