Planted Bipartite Graph Detection
- URL: http://arxiv.org/abs/2302.03658v2
- Date: Wed, 6 Mar 2024 08:30:48 GMT
- Title: Planted Bipartite Graph Detection
- Authors: Asaf Rotenberg and Wasim Huleihel and Ofer Shayevitz
- Abstract summary: We consider the task of detecting a hidden bipartite subgraph in a given random graph.
Under the null hypothesis, the graph is a realization of an ErdHosR'enyi random graph over $n$ with edge density $q$.
Under the alternative, there exists a planted $k_mathsfR times k_mathsfL$ bipartite subgraph with edge density $p>q$.
- Score: 13.95780443241133
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the task of detecting a hidden bipartite subgraph in a given
random graph. This is formulated as a hypothesis testing problem, under the
null hypothesis, the graph is a realization of an Erd\H{o}s-R\'{e}nyi random
graph over $n$ vertices with edge density $q$. Under the alternative, there
exists a planted $k_{\mathsf{R}} \times k_{\mathsf{L}}$ bipartite subgraph with
edge density $p>q$. We characterize the statistical and computational barriers
for this problem. Specifically, we derive information-theoretic lower bounds,
and design and analyze optimal algorithms matching those bounds, in both the
dense regime, where $p,q = \Theta\left(1\right)$, and the sparse regime where
$p,q = \Theta\left(n^{-\alpha}\right), \alpha \in \left(0,2\right]$. We also
consider the problem of testing in polynomial-time. As is customary in similar
structured high-dimensional problems, our model undergoes an
"easy-hard-impossible" phase transition and computational constraints penalize
the statistical performance. To provide an evidence for this statistical
computational gap, we prove computational lower bounds based on the low-degree
conjecture, and show that the class of low-degree polynomials algorithms fail
in the conjecturally hard region.
Related papers
- A computational transition for detecting correlated stochastic block models by low-degree polynomials [13.396246336911842]
Detection of correlation in a pair of random graphs is a fundamental statistical and computational problem that has been extensively studied in recent years.
We consider a pair of correlated block models $mathcalS(n,tfraclambdan;k,epsilon;s)$ that are subsampled from a common parent block model $mathcal S(n,tfraclambdan;k,epsilon;s)$
We focus on tests based on emphlow-degrees of the entries of the adjacency
arXiv Detail & Related papers (2024-09-02T06:14:05Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - Detection-Recovery Gap for Planted Dense Cycles [72.4451045270967]
We consider a model where a dense cycle with expected bandwidth $n tau$ and edge density $p$ is planted in an ErdHos-R'enyi graph $G(n,q)$.
We characterize the computational thresholds for the associated detection and recovery problems for the class of low-degree algorithms.
arXiv Detail & Related papers (2023-02-13T22:51:07Z) - Statistical limits of correlation detection in trees [0.7826806223782055]
This paper addresses the problem of testing whether two observed trees $(t,t')$ are sampled independently or from a joint distribution under which they are correlated.
Motivated by graph alignment, we investigate the conditions of existence of one-sided tests.
We find that no such test exists for $s leq sqrtalpha$, and that such a test exists whenever $s > sqrtalpha$, for $lambda$ large enough.
arXiv Detail & Related papers (2022-09-27T22:26:53Z) - Causal Bandits for Linear Structural Equation Models [58.2875460517691]
This paper studies the problem of designing an optimal sequence of interventions in a causal graphical model.
It is assumed that the graph's structure is known and has $N$ nodes.
Two algorithms are proposed for the frequentist (UCB-based) and Bayesian settings.
arXiv Detail & Related papers (2022-08-26T16:21:31Z) - Optimal Gradient Sliding and its Application to Distributed Optimization
Under Similarity [121.83085611327654]
We structured convex optimization problems with additive objective $r:=p + q$, where $r$ is $mu$-strong convex similarity.
We proposed a method to solve problems master to agents' communication and local calls.
The proposed method is much sharper than the $mathcalO(sqrtL_q/mu)$ method.
arXiv Detail & Related papers (2022-05-30T14:28:02Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Inferring Hidden Structures in Random Graphs [13.031167737538881]
We study the two inference problems of detecting and recovering an isolated community of emphgeneral structure planted in a random graph.
We derive lower bounds for detecting/recovering the structure $Gamma_k$ in terms of the parameters $(n,k,q)$, as well as certain properties of $Gamma_k$, and exhibit computationally optimal algorithms that achieve these lower bounds.
arXiv Detail & Related papers (2021-10-05T09:39:51Z) - Random Subgraph Detection Using Queries [29.192695995340653]
The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense.
In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries.
For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph.
arXiv Detail & Related papers (2021-10-02T07:41:17Z) - Testing correlation of unlabeled random graphs [18.08210501570919]
We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes.
This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated.
Under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null.
arXiv Detail & Related papers (2020-08-23T19:19:45Z) - On Gradient Descent Ascent for Nonconvex-Concave Minimax Problems [86.92205445270427]
We consider non-con minimax problems, $min_mathbfx max_mathhidoty f(mathbfdoty)$ efficiently.
arXiv Detail & Related papers (2019-06-02T03:03:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.