VoltaVision: A Transfer Learning model for electronic component classification
- URL: http://arxiv.org/abs/2404.03898v1
- Date: Fri, 5 Apr 2024 05:42:23 GMT
- Title: VoltaVision: A Transfer Learning model for electronic component classification
- Authors: Anas Mohammad Ishfaqul Muktadir Osmani, Taimur Rahman, Salekul Islam,
- Abstract summary: We introduce a lightweight CNN, coined as VoltaVision, and compare its performance against more complex models.
We test the hypothesis that transferring knowledge from a similar task to our target domain yields better results than state-of-the-art models trained on general datasets.
- Score: 1.4132765964347058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we analyze the effectiveness of transfer learning on classifying electronic components. Transfer learning reuses pre-trained models to save time and resources in building a robust classifier rather than learning from scratch. Our work introduces a lightweight CNN, coined as VoltaVision, and compares its performance against more complex models. We test the hypothesis that transferring knowledge from a similar task to our target domain yields better results than state-of-the-art models trained on general datasets. Our dataset and code for this work are available at https://github.com/AnasIshfaque/VoltaVision.
Related papers
- Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Heterogeneous Generative Knowledge Distillation with Masked Image
Modeling [33.95780732124864]
Masked image modeling (MIM) methods achieve great success in various visual tasks but remain largely unexplored in knowledge distillation for heterogeneous deep models.
We develop the first Heterogeneous Generative Knowledge Distillation (H-GKD) based on MIM, which can efficiently transfer knowledge from large Transformer models to small CNN-based models in a generative self-supervised fashion.
Our method is a simple yet effective learning paradigm to learn the visual representation and distribution of data from heterogeneous teacher models.
arXiv Detail & Related papers (2023-09-18T08:30:55Z) - Transfer Learning between Motor Imagery Datasets using Deep Learning --
Validation of Framework and Comparison of Datasets [0.0]
We present a simple deep learning-based framework commonly used in computer vision.
We demonstrate its effectiveness for cross-dataset transfer learning in mental imagery decoding tasks.
arXiv Detail & Related papers (2023-09-04T20:58:57Z) - A Memory Transformer Network for Incremental Learning [64.0410375349852]
We study class-incremental learning, a training setup in which new classes of data are observed over time for the model to learn from.
Despite the straightforward problem formulation, the naive application of classification models to class-incremental learning results in the "catastrophic forgetting" of previously seen classes.
One of the most successful existing methods has been the use of a memory of exemplars, which overcomes the issue of catastrophic forgetting by saving a subset of past data into a memory bank and utilizing it to prevent forgetting when training future tasks.
arXiv Detail & Related papers (2022-10-10T08:27:28Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - Comparison Analysis of Traditional Machine Learning and Deep Learning
Techniques for Data and Image Classification [62.997667081978825]
The purpose of the study is to analyse and compare the most common machine learning and deep learning techniques used for computer vision 2D object classification tasks.
Firstly, we will present the theoretical background of the Bag of Visual words model and Deep Convolutional Neural Networks (DCNN)
Secondly, we will implement a Bag of Visual Words model, the VGG16 CNN Architecture.
arXiv Detail & Related papers (2022-04-11T11:34:43Z) - How Well Do Sparse Imagenet Models Transfer? [75.98123173154605]
Transfer learning is a classic paradigm by which models pretrained on large "upstream" datasets are adapted to yield good results on "downstream" datasets.
In this work, we perform an in-depth investigation of this phenomenon in the context of convolutional neural networks (CNNs) trained on the ImageNet dataset.
We show that sparse models can match or even outperform the transfer performance of dense models, even at high sparsities.
arXiv Detail & Related papers (2021-11-26T11:58:51Z) - Do Adversarially Robust ImageNet Models Transfer Better? [102.09335596483695]
adversarially robust models often perform better than their standard-trained counterparts when used for transfer learning.
Our results are consistent with (and in fact, add to) recent hypotheses stating that robustness leads to improved feature representations.
arXiv Detail & Related papers (2020-07-16T17:42:40Z) - Efficient Learning of Model Weights via Changing Features During
Training [0.0]
We propose a machine learning model, which dynamically changes the features during training.
Our main motivation is to update the model in a small content during the training process with replacing less descriptive features to new ones from a large pool.
arXiv Detail & Related papers (2020-02-21T12:38:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.