論文の概要: Deep Phase Coded Image Prior
- arxiv url: http://arxiv.org/abs/2404.03906v1
- Date: Fri, 5 Apr 2024 05:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 16:44:14.986378
- Title: Deep Phase Coded Image Prior
- Title(参考訳): Deep Phase Coded Image Prior
- Authors: Nimrod Shabtay, Eli Schwartz, Raja Giryes,
- Abstract要約: 位相符号化イメージングは受動深度推定や拡大深度推定といった課題に対処する手法である。
深度推定やオールインフォーカスイメージングのための現在のディープラーニングベースの手法のほとんどは、高品質の深度マップを備えたトレーニングデータセットを必要とする。
本稿では,深度マップと全焦点画像の同時復元のためのDPCIP (Deep Phase Coded Image Prior) を提案する。
- 参考スコア(独自算出の注目度): 34.84063452418995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phase-coded imaging is a computational imaging method designed to tackle tasks such as passive depth estimation and extended depth of field (EDOF) using depth cues inserted during image capture. Most of the current deep learning-based methods for depth estimation or all-in-focus imaging require a training dataset with high-quality depth maps and an optimal focus point at infinity for all-in-focus images. Such datasets are difficult to create, usually synthetic, and require external graphic programs. We propose a new method named "Deep Phase Coded Image Prior" (DPCIP) for jointly recovering the depth map and all-in-focus image from a coded-phase image using solely the captured image and the optical information of the imaging system. Our approach does not depend on any specific dataset and surpasses prior supervised techniques utilizing the same imaging system. This improvement is achieved through the utilization of a problem formulation based on implicit neural representation (INR) and deep image prior (DIP). Due to our zero-shot method, we overcome the barrier of acquiring accurate ground-truth data of depth maps and all-in-focus images for each new phase-coded system introduced. This allows focusing mainly on developing the imaging system, and not on ground-truth data collection.
- Abstract(参考訳): 位相符号化イメージング(英: Phase-coded imaging)は、画像キャプチャ中に挿入される深度キューを用いて、受動深度推定や拡張深度(EDOF)といったタスクに取り組むために設計された計算イメージング手法である。
深度推定やオールインフォーカス画像の現在のディープラーニングベースの手法のほとんどは、高品質な深度マップと、オールインフォーカス画像のインフィニティにおける最適なフォーカスポイントを備えたトレーニングデータセットを必要とする。
このようなデータセットは作成が困難で、通常は合成され、外部のグラフィックプログラムを必要とする。
そこで本研究では,DPCIP(Deep Phase Coded Image Prior)と呼ばれる新たな手法を提案する。
提案手法は特定のデータセットに依存しず,同じイメージングシステムを用いた先行監視手法を超越した手法である。
この改善は、暗黙的ニューラル表現(INR)とディープイメージ事前(DIP)に基づく問題定式化の利用によって達成される。
ゼロショット法により,新しい位相符号化システムに導入された深度マップとオールインフォーカス画像の精度の高い接地構造データを取得する障壁を克服する。
これにより、地中構造データ収集ではなく、主に撮像システムの開発に焦点が当てられる。
関連論文リスト
- Depth Estimation Based on 3D Gaussian Splatting Siamese Defocus [14.354405484663285]
本稿では,3次元幾何学における深さ推定のための3次元ガウススプラッティングとシームズネットワークに基づく自己教師型フレームワークを提案する。
提案したフレームワークは、人工的に合成されたデータセットと実際のぼやけたデータセットの両方で検証されている。
論文 参考訳(メタデータ) (2024-09-18T21:36:37Z) - Pixel-Aligned Multi-View Generation with Depth Guided Decoder [86.1813201212539]
画素レベルの画像・マルチビュー生成のための新しい手法を提案する。
従来の作業とは異なり、潜伏映像拡散モデルのVAEデコーダにマルチビュー画像にアテンション層を組み込む。
本モデルにより,マルチビュー画像間の画素アライメントが向上する。
論文 参考訳(メタデータ) (2024-08-26T04:56:41Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
様々な深度センサによる不正確な深度測定を改善するために偏光イメージングを利用するフレームワークを提案する。
まず、偏光データとセンサ深度マップから高密度で完全な深度マップを推定するために、ニューラルネットワークを訓練した学習ベースの戦略を採用する。
大規模データセット上で事前学習したRGBモデルを有効に活用するためのPPFT(Polarization Prompt Fusion Tuning)戦略を提案する。
論文 参考訳(メタデータ) (2024-04-05T17:55:33Z) - Towards Real-World Focus Stacking with Deep Learning [97.34754533628322]
焦点ブラケットを用いた94個の高解像度原画像のバーストからなる新しいデータセットを提案する。
このデータセットは、現実世界のアプリケーションに十分な長さのバーストを処理できるフォーカススタックのための最初のディープラーニングアルゴリズムをトレーニングするために使用される。
論文 参考訳(メタデータ) (2023-11-29T17:49:33Z) - Multi-task Learning for Monocular Depth and Defocus Estimations with
Real Images [3.682618267671887]
既存の手法の多くは、深度推定とデフォーカス推定を2つの別々のタスクとして扱い、それら間の強いつながりを無視している。
本稿では、2つのデコーダを持つエンコーダからなるマルチタスク学習ネットワークを提案し、単一の焦点画像から深度とデフォーカスマップを推定する。
我々の深度とデフォーカス推定は、他の最先端アルゴリズムよりも大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-08-21T08:59:56Z) - End-to-end Learning for Joint Depth and Image Reconstruction from
Diffracted Rotation [10.896567381206715]
回折回転から深度を学習する新しいエンド・ツー・エンド学習手法を提案する。
提案手法は, 単分子深度推定のタスクにおいて既存の手法よりもはるかに少ない複雑なモデルと少ないトレーニングデータを必要とする。
論文 参考訳(メタデータ) (2022-04-14T16:14:37Z) - Deep Autofocus for Synthetic Aperture Sonar [28.306713374371814]
本稿では,機械学習,特にディープラーニングがオートフォーカス問題に対処する可能性を示す。
我々は、Deep Autofocusと呼ばれるディープネットワークを用いて、自己教師型位相誤差推定タスクとして問題を定式化する。
以上の結果から,Deep Autofocusは,ベンチマーク反復手法に劣らず,計算コストが大幅に低い画像を生成することができることを示した。
論文 参考訳(メタデータ) (2020-10-29T15:31:15Z) - Defocus Blur Detection via Depth Distillation [64.78779830554731]
初めてDBDに深度情報を導入します。
より詳しくは, 地底の真理と, 十分に訓練された深度推定ネットワークから抽出した深度から, デフォーカスのぼかしを学習する。
我々の手法は、2つの一般的なデータセット上で11の最先端の手法より優れています。
論文 参考訳(メタデータ) (2020-07-16T04:58:09Z) - Depth Completion Using a View-constrained Deep Prior [73.21559000917554]
近年の研究では、畳み込みニューラルネットワーク(CNN)の構造が、自然画像に有利な強い先行性をもたらすことが示されている。
この前者はディープ・イメージ・先行 (DIP) と呼ばれ、画像の装飾や塗装といった逆問題において有効な正則化器である。
我々は、DIPの概念を深度画像に拡張し、色画像とノイズと不完全な目標深度マップから、CNNネットワーク構造を先行して復元された深度マップを再構成する。
論文 参考訳(メタデータ) (2020-01-21T21:56:01Z) - Single Image Depth Estimation Trained via Depth from Defocus Cues [105.67073923825842]
単一のRGB画像から深度を推定することはコンピュータビジョンの基本的な課題である。
この作業では、異なる視点ではなく、フォーカスキューからの奥行きに依存しています。
我々は,KITTIとMake3Dデータセットの教師あり手法と同等な結果を提示し,教師なし学習手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-01-14T20:22:54Z) - Learning Wavefront Coding for Extended Depth of Field Imaging [4.199844472131922]
拡張深度画像(EDoF)は難題である。
回折光学素子による波面符号化を応用したEDoFの計算画像化手法を提案する。
深部3Dシーンやブロードバンド画像など,さまざまなシナリオにおいて,最小限の成果が得られた。
論文 参考訳(メタデータ) (2019-12-31T17:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。