論文の概要: Deep Learning for Satellite Image Time Series Analysis: A Review
- arxiv url: http://arxiv.org/abs/2404.03936v1
- Date: Fri, 5 Apr 2024 07:44:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 16:44:14.960485
- Title: Deep Learning for Satellite Image Time Series Analysis: A Review
- Title(参考訳): 衛星画像時系列解析のための深層学習
- Authors: Lynn Miller, Charlotte Pelletier, Geoffrey I. Webb,
- Abstract要約: 本稿では,SITSデータから環境,農業,その他の地球観測変数をモデル化する最先端の手法について,深層学習法を用いて概説する。
- 参考スコア(独自算出の注目度): 5.882962965835289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Earth observation (EO) satellite missions have been providing detailed images about the state of the Earth and its land cover for over 50 years. Long term missions, such as NASA's Landsat, Terra, and Aqua satellites, and more recently, the ESA's Sentinel missions, record images of the entire world every few days. Although single images provide point-in-time data, repeated images of the same area, or satellite image time series (SITS) provide information about the changing state of vegetation and land use. These SITS are useful for modeling dynamic processes and seasonal changes such as plant phenology. They have potential benefits for many aspects of land and natural resource management, including applications in agricultural, forest, water, and disaster management, urban planning, and mining. However, the resulting satellite image time series (SITS) are complex, incorporating information from the temporal, spatial, and spectral dimensions. Therefore, deep learning methods are often deployed as they can analyze these complex relationships. This review presents a summary of the state-of-the-art methods of modelling environmental, agricultural, and other Earth observation variables from SITS data using deep learning methods. We aim to provide a resource for remote sensing experts interested in using deep learning techniques to enhance Earth observation models with temporal information.
- Abstract(参考訳): 地球観測(EO)衛星ミッションは、50年以上にわたって地球の状態とその陸地に関する詳細な画像を提供してきた。
NASAのランドサット、テラ、アクアなどの長期ミッション、最近ではESAのセンチネルミッションが数日ごとに世界中の画像を記録している。
単一画像はポイント・イン・タイムのデータを提供するが、同じ領域の繰り返し画像、または衛星画像時系列(SITS)は、植生や土地利用の変化状況に関する情報を提供する。
これらのSITSは、植物表現学のような動的プロセスや季節変化のモデル化に有用である。
農業、森林、水、災害管理、都市計画、鉱業など、土地と天然資源の管理の多くの面で潜在的に有利である。
しかし、衛星画像時系列(SITS)は複雑であり、時間次元、空間次元、スペクトル次元の情報を取り入れている。
したがって、深層学習手法は複雑な関係を解析できるため、しばしば展開される。
本稿では,SITSデータから環境,農業,その他の地球観測変数をモデル化する最先端の手法について,深層学習法を用いて概説する。
我々は、深層学習技術を用いて、時間情報を用いた地球観測モデルを強化することに関心のあるリモートセンシング専門家のためのリソースを提供することを目的としている。
関連論文リスト
- Foundation Models for Remote Sensing and Earth Observation: A Survey [101.77425018347557]
本調査は、リモートセンシング基礎モデル(RSFM)の新しい分野を体系的にレビューする。
モチベーションと背景の概要から始まり、続いて基本概念が導入された。
我々はこれらのモデルを公開データセットと比較し、既存の課題について議論し、今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2024-10-22T01:08:21Z) - Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
本稿では,セマンティックセグメンテーションのための後期融合深層学習モデル(LF-DLM)を提案する。
1つのブランチは、UNetFormerがキャプチャした空中画像の詳細なテクスチャと、ViT(Multi-Axis Vision Transformer)バックボーンを統合する。
もう一方のブランチは、U-ViNet(U-TAE)を用いてSentinel-2衛星画像Max時系列から複雑な時間ダイナミクスをキャプチャする。
論文 参考訳(メタデータ) (2024-10-01T07:50:37Z) - An Aligned Multi-Temporal Multi-Resolution Satellite Image Dataset for
Change Detection Research [0.0]
本稿では,変化検出のための多時間・多解像度衛星画像データセットについて述べる。
このデータセットは、SpaceNet-7データセットをランドサットとセンチネルの画像の時間並列スタックで拡張することで作成された。
論文 参考訳(メタデータ) (2023-02-23T19:43:20Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
本稿では,空間的帰納バイアスを持つ汎用ニューラルアーキテクチャ(GPNA)の構築に向けたロードマップを示す。
このようなモデルがコミュニティのメンバー間の協力をいかに促進するかを考察する。
論文 参考訳(メタデータ) (2022-11-04T09:58:57Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
本稿では,公開されているリモートセンシングデータからなるマルチモーダル・大規模時間データセットを作成するためのアプローチを提案する。
我々は、異なる種類の植生を分離できる畳み込みニューラルネットワーク(CNN)モデルを使用する。
論文 参考訳(メタデータ) (2022-09-28T18:51:59Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
本稿では,機械学習を用いた衛星画像時系列解析のためのオープンソースRパッケージである sit について述べる。
本手法は, Cerrado Biome のケーススタディにより, 土地利用と土地被覆マップの精度が高いことを示す。
論文 参考訳(メタデータ) (2022-04-24T15:23:25Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - Multimodal learning-based inversion models for the space-time
reconstruction of satellite-derived geophysical fields [40.33123267556167]
各種の衛星センサーは、衛星軌道による異なるサンプリングパターンの観測データや、大気環境に対する感度を提供する。
本稿では,エンドツーエンドの学習手法がマルチモーダル・インバージョン問題に対処するための新しい手段を提供する方法について検討する。
本手法は,衛星から得られた海面温度画像から適切な情報を抽出し,衛星高度データからの海面電流の復元をいかに進めるかを示す。
論文 参考訳(メタデータ) (2022-03-20T20:37:03Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Deep Neural Networks for automatic extraction of features in time series
satellite images [3.3598755777055374]
本研究ではランドサット・センチネル,SPOT,その他の時系列画像から得られた時間的・空間的情報を利用してランドサット・カバー・マップを生成する。
実験の結果、プレアデスの時間情報により、土地被覆分類の精度が向上し、地球上の変化を特定するのに役立つ最新の地図が作成できることがわかった。
論文 参考訳(メタデータ) (2020-08-17T09:26:52Z) - Attentive Weakly Supervised land cover mapping for object-based
satellite image time series data with spatial interpretation [4.549831511476249]
本稿では,粗粒度ラベルの弱さをインテリジェントに活用できる,TASSELという新しいディープラーニングフレームワークを提案する。
私たちのフレームワークは、ブラックボックスをグレーにする目的で、モデル解釈可能性をサポートする追加のサイド情報も生成します。
論文 参考訳(メタデータ) (2020-04-30T10:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。