VoicePilot: Harnessing LLMs as Speech Interfaces for Physically Assistive Robots
- URL: http://arxiv.org/abs/2404.04066v2
- Date: Wed, 17 Jul 2024 01:38:16 GMT
- Title: VoicePilot: Harnessing LLMs as Speech Interfaces for Physically Assistive Robots
- Authors: Akhil Padmanabha, Jessie Yuan, Janavi Gupta, Zulekha Karachiwalla, Carmel Majidi, Henny Admoni, Zackory Erickson,
- Abstract summary: Speech interfaces that utilize Large Language Models (LLMs) can enable individuals to communicate high-level commands and nuanced preferences to robots.
Frameworks for integrating LLMs as interfaces to robots for high level task planning and code generation have been proposed, but fail to incorporate human-centric considerations.
We present a framework for incorporating LLMs as speech interfaces for physically assistive robots, constructed iteratively with 3 stages of testing involving a feeding robot, culminating in an evaluation with 11 older adults at an independent living facility.
- Score: 9.528060348251584
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physically assistive robots present an opportunity to significantly increase the well-being and independence of individuals with motor impairments or other forms of disability who are unable to complete activities of daily living. Speech interfaces, especially ones that utilize Large Language Models (LLMs), can enable individuals to effectively and naturally communicate high-level commands and nuanced preferences to robots. Frameworks for integrating LLMs as interfaces to robots for high level task planning and code generation have been proposed, but fail to incorporate human-centric considerations which are essential while developing assistive interfaces. In this work, we present a framework for incorporating LLMs as speech interfaces for physically assistive robots, constructed iteratively with 3 stages of testing involving a feeding robot, culminating in an evaluation with 11 older adults at an independent living facility. We use both quantitative and qualitative data from the final study to validate our framework and additionally provide design guidelines for using LLMs as speech interfaces for assistive robots. Videos and supporting files are located on our project website: https://sites.google.com/andrew.cmu.edu/voicepilot/
Related papers
- A Paragraph is All It Takes: Rich Robot Behaviors from Interacting, Trusted LLMs [2.4866349670733294]
Large Language Models (LLMs) are compact representations of all public knowledge of our physical environment and animal and human behaviors.
We show that rich robot behaviors and good performance could be achieved despite the robot's data fusion cycle running at only 1Hz.
The use of natural language for inter-LLM communication allowed the robot's reasoning and decision making to be directly observed by humans.
We suggest that by using natural language as the data bus among interacting AIs, and immutable public ledgers to store behavior constraints, it is possible to build robots that combine unexpectedly rich performance, upgradability, and
arXiv Detail & Related papers (2024-12-24T18:41:15Z) - TalkWithMachines: Enhancing Human-Robot Interaction for Interpretable Industrial Robotics Through Large/Vision Language Models [1.534667887016089]
The presented paper investigates recent advancements in Large Language Models (LLMs) and Vision Language Models (VLMs)
This integration allows robots to understand and execute commands given in natural language and to perceive their environment through visual and/or descriptive inputs.
Our paper outlines four LLM-assisted simulated robotic control, which explore (i) low-level control, (ii) the generation of language-based feedback that describes the robot's internal states, (iii) the use of visual information as additional input, and (iv) the use of robot structure information for generating task plans and feedback.
arXiv Detail & Related papers (2024-12-19T23:43:40Z) - $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Towards an LLM-Based Speech Interface for Robot-Assisted Feeding [9.528060348251584]
Speech interfaces that utilize Large Language Models (LLMs) can enable individuals to communicate high-level commands and nuanced preferences to robots.
In this work, we demonstrate an LLM-based speech interface for a commercially available assistive feeding robot.
arXiv Detail & Related papers (2024-10-27T22:56:51Z) - LLaRA: Supercharging Robot Learning Data for Vision-Language Policy [56.505551117094534]
We introduce LLaRA: Large Language and Robotics Assistant, a framework that formulates robot action policy as visuo-textual conversations.
First, we present an automated pipeline to generate conversation-style instruction tuning data for robots from existing behavior cloning datasets.
We show that a VLM finetuned with a limited amount of such datasets can produce meaningful action decisions for robotic control.
arXiv Detail & Related papers (2024-06-28T17:59:12Z) - Ain't Misbehavin' -- Using LLMs to Generate Expressive Robot Behavior in
Conversations with the Tabletop Robot Haru [9.2526849536751]
We introduce a fully-automated conversation system that leverages large language models (LLMs) to generate robot responses with expressive behaviors.
We conduct a pilot study where volunteers chat with a social robot using our proposed system, and we analyze their feedback, conducting a rigorous error analysis of chat transcripts.
Most negative feedback was due to automatic speech recognition (ASR) errors which had limited impact on conversations.
arXiv Detail & Related papers (2024-02-18T12:35:52Z) - AutoRT: Embodied Foundation Models for Large Scale Orchestration of Robotic Agents [109.3804962220498]
AutoRT is a system to scale up the deployment of operational robots in completely unseen scenarios with minimal human supervision.
We demonstrate AutoRT proposing instructions to over 20 robots across multiple buildings and collecting 77k real robot episodes via both teleoperation and autonomous robot policies.
We experimentally show that such "in-the-wild" data collected by AutoRT is significantly more diverse, and that AutoRT's use of LLMs allows for instruction following data collection robots that can align to human preferences.
arXiv Detail & Related papers (2024-01-23T18:45:54Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - WALL-E: Embodied Robotic WAiter Load Lifting with Large Language Model [92.90127398282209]
This paper investigates the potential of integrating the most recent Large Language Models (LLMs) and existing visual grounding and robotic grasping system.
We introduce the WALL-E (Embodied Robotic WAiter load lifting with Large Language model) as an example of this integration.
We deploy this LLM-empowered system on the physical robot to provide a more user-friendly interface for the instruction-guided grasping task.
arXiv Detail & Related papers (2023-08-30T11:35:21Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z) - Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot [58.2026611111328]
Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in noisy environments.
Having a robot that can look toward a speaker could benefit ASR performance in challenging environments.
We propose a self-supervised reinforcement learning-based framework inspired by the early development of humans.
arXiv Detail & Related papers (2020-11-12T18:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.