A Paragraph is All It Takes: Rich Robot Behaviors from Interacting, Trusted LLMs
- URL: http://arxiv.org/abs/2412.18588v1
- Date: Tue, 24 Dec 2024 18:41:15 GMT
- Title: A Paragraph is All It Takes: Rich Robot Behaviors from Interacting, Trusted LLMs
- Authors: OpenMind, Shaohong Zhong, Adam Zhou, Boyuan Chen, Homin Luo, Jan Liphardt,
- Abstract summary: Large Language Models (LLMs) are compact representations of all public knowledge of our physical environment and animal and human behaviors.
We show that rich robot behaviors and good performance could be achieved despite the robot's data fusion cycle running at only 1Hz.
The use of natural language for inter-LLM communication allowed the robot's reasoning and decision making to be directly observed by humans.
We suggest that by using natural language as the data bus among interacting AIs, and immutable public ledgers to store behavior constraints, it is possible to build robots that combine unexpectedly rich performance, upgradability, and
- Score: 2.4866349670733294
- License:
- Abstract: Large Language Models (LLMs) are compact representations of all public knowledge of our physical environment and animal and human behaviors. The application of LLMs to robotics may offer a path to highly capable robots that perform well across most human tasks with limited or even zero tuning. Aside from increasingly sophisticated reasoning and task planning, networks of (suitably designed) LLMs offer ease of upgrading capabilities and allow humans to directly observe the robot's thinking. Here we explore the advantages, limitations, and particularities of using LLMs to control physical robots. The basic system consists of four LLMs communicating via a human language data bus implemented via web sockets and ROS2 message passing. Surprisingly, rich robot behaviors and good performance across different tasks could be achieved despite the robot's data fusion cycle running at only 1Hz and the central data bus running at the extremely limited rates of the human brain, of around 40 bits/s. The use of natural language for inter-LLM communication allowed the robot's reasoning and decision making to be directly observed by humans and made it trivial to bias the system's behavior with sets of rules written in plain English. These rules were immutably written into Ethereum, a global, public, and censorship resistant Turing-complete computer. We suggest that by using natural language as the data bus among interacting AIs, and immutable public ledgers to store behavior constraints, it is possible to build robots that combine unexpectedly rich performance, upgradability, and durable alignment with humans.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Towards an LLM-Based Speech Interface for Robot-Assisted Feeding [9.528060348251584]
Speech interfaces that utilize Large Language Models (LLMs) can enable individuals to communicate high-level commands and nuanced preferences to robots.
In this work, we demonstrate an LLM-based speech interface for a commercially available assistive feeding robot.
arXiv Detail & Related papers (2024-10-27T22:56:51Z) - Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration [4.2460673279562755]
Large Language Models (LLMs) are gaining popularity in the field of robotics.
This paper proposes a novel approach to enhance the performance of LLM-based autonomous manipulation through Human-Robot Collaboration (HRC)
The approach involves using a prompted GPT-4 language model to decompose high-level language commands into sequences of motions that can be executed by the robot.
arXiv Detail & Related papers (2024-06-20T08:23:49Z) - VoicePilot: Harnessing LLMs as Speech Interfaces for Physically Assistive Robots [9.528060348251584]
Speech interfaces that utilize Large Language Models (LLMs) can enable individuals to communicate high-level commands and nuanced preferences to robots.
Frameworks for integrating LLMs as interfaces to robots for high level task planning and code generation have been proposed, but fail to incorporate human-centric considerations.
We present a framework for incorporating LLMs as speech interfaces for physically assistive robots, constructed iteratively with 3 stages of testing involving a feeding robot, culminating in an evaluation with 11 older adults at an independent living facility.
arXiv Detail & Related papers (2024-04-05T12:45:10Z) - Large Language Models for Robotics: A Survey [40.76581696885846]
Large language models (LLMs) possess the ability to process and generate natural language, facilitating efficient interaction and collaboration with robots.
This review aims to summarize the applications of LLMs in robotics, delving into their impact and contributions to key areas such as robot control, perception, decision-making, and path planning.
arXiv Detail & Related papers (2023-11-13T10:46:35Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
We propose a system to achieve incremental learning of complex behavior from natural interaction.
We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6.
arXiv Detail & Related papers (2023-09-08T13:29:05Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Open-World Object Manipulation using Pre-trained Vision-Language Models [72.87306011500084]
For robots to follow instructions from people, they must be able to connect the rich semantic information in human vocabulary.
We develop a simple approach, which leverages a pre-trained vision-language model to extract object-identifying information.
In a variety of experiments on a real mobile manipulator, we find that MOO generalizes zero-shot to a wide range of novel object categories and environments.
arXiv Detail & Related papers (2023-03-02T01:55:10Z) - Robots with Different Embodiments Can Express and Influence Carefulness
in Object Manipulation [104.5440430194206]
This work investigates the perception of object manipulations performed with a communicative intent by two robots.
We designed the robots' movements to communicate carefulness or not during the transportation of objects.
arXiv Detail & Related papers (2022-08-03T13:26:52Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
We study the problem of learning a range of vision-based manipulation tasks from a large offline dataset of robot interaction.
We propose to leverage offline robot datasets with crowd-sourced natural language labels.
We find that our approach outperforms both goal-image specifications and language conditioned imitation techniques by more than 25%.
arXiv Detail & Related papers (2021-09-02T17:42:13Z) - Self-supervised reinforcement learning for speaker localisation with the
iCub humanoid robot [58.2026611111328]
Looking at a person's face is one of the mechanisms that humans rely on when it comes to filtering speech in noisy environments.
Having a robot that can look toward a speaker could benefit ASR performance in challenging environments.
We propose a self-supervised reinforcement learning-based framework inspired by the early development of humans.
arXiv Detail & Related papers (2020-11-12T18:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.