Crosstalk-mitigated microelectronic control for optically-active spins
- URL: http://arxiv.org/abs/2404.04075v1
- Date: Fri, 5 Apr 2024 13:03:35 GMT
- Title: Crosstalk-mitigated microelectronic control for optically-active spins
- Authors: Hao-Cheng Weng, John G. Rarity, Krishna C. Balram, Joe A. Smith,
- Abstract summary: We present a crosstalk-mitigation scheme to address solid-state spins at sub-100 um spacing without the need for qubit-detuning.
Our results present a step towards scalable control across quantum platforms using silicon microelectronics.
- Score: 0.07499722271664144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To exploit the sub-nanometre dimensions of qubits for large-scale quantum information processing, corresponding control architectures require both energy and space efficiency, with the on-chip footprint of unit-cell electronics ideally micron-scale. However, the spin coherence of qubits in close packing is severely deteriorated by microwave crosstalk from neighbouring control sites. Here, we present a crosstalk-mitigation scheme using foundry microelectronics, to address solid-state spins at sub-100 um spacing without the need for qubit-detuning. Using nitrogen-vacancy centres in nanodiamonds as qubit prototypes, we first demonstrate 10 MHz Rabi oscillation at milliwatts of microwave power. Implementing the active cancellation, we then prove that the crosstalk field from neighbouring lattice sites can be reduced to undetectable levels. We finally extend the scheme to show increased qubit control, tripling the spin coherence under crosstalk mitigation. Compatible with integrated optics, our results present a step towards scalable control across quantum platforms using silicon microelectronics.
Related papers
- Microwave-activated two-qubit gates for fixed-coupling and fixed-frequency transmon qubits [6.175888443499163]
This study proposes a microwave-activated two-qubit gate scheme for two fixed-frequency transmon qubits coupled via a fixed-frequency transmon coupler.
We show that the gate fidelity exceeding 0.999 can be achieved within 150 ns, excluding decoherence effects.
arXiv Detail & Related papers (2024-10-10T11:04:34Z) - Spin Qubits with Scalable milli-kelvin CMOS Control [0.0]
We benchmark silicon MOS-style electron spin qubits controlled via heterogeneously-integrated cryo-CMOS circuits.
We show that mill-kelvin control has little impact on the performance of single- and two-qubit gates.
arXiv Detail & Related papers (2024-07-21T13:04:21Z) - Scalable, high-fidelity all-electronic control of trapped-ion qubits [0.0]
Existing approaches to qubit control suffer from a scale-performance trade-off, impeding progress towards useful devices.
We present a vision for an electronically controlled trapped-ion quantum computer that alleviates this bottleneck.
We experimentally demonstrate low-noise site-selective single- and two-qubit gates in a seven-zone ion trap that can control up to 10 qubits.
arXiv Detail & Related papers (2024-07-10T14:21:58Z) - Parametrically controlled chiral interface for superconducting quantum devices [0.0]
Nonreciprocal microwave routing plays a crucial role for measuring quantum circuits.
Ferrite-based circulators suffer from excess loss, a large footprint, and fixed directionality.
Here, we report the design and experimental realization of a minimal controllable directional interface.
arXiv Detail & Related papers (2024-05-23T22:15:40Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - An integrated microwave-to-optics interface for scalable quantum
computing [47.187609203210705]
We present a new design for an integrated transducer based on a superconducting resonator coupled to a silicon photonic cavity.
We experimentally demonstrate its unique performance and potential for simultaneously realizing all of the above conditions.
Our device couples directly to a 50-Ohm transmission line and can easily be scaled to a large number of transducers on a single chip.
arXiv Detail & Related papers (2022-10-27T18:05:01Z) - Enhancing the Coherence of Superconducting Quantum Bits with Electric
Fields [62.997667081978825]
We show that qubit coherence can be improved by tuning defects away from the qubit resonance using an applied DC-electric field.
We also discuss how local gate electrodes can be implemented in superconducting quantum processors to enable simultaneous in-situ coherence optimization of individual qubits.
arXiv Detail & Related papers (2022-08-02T16:18:30Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - Coherent control in the ground and optically excited state of an
ensemble of erbium dopants [55.41644538483948]
Ensembles of erbium dopants can realize quantum memories and frequency converters.
In this work, we use a split-ring microwave resonator to demonstrate such control in both the ground and optically excited state.
arXiv Detail & Related papers (2021-05-18T13:03:38Z) - A low-noise on-chip coherent microwave source [0.0]
We report an on-chip device that is based on a Josephson junction coupled to a spiral resonator and is capable of coherent continuous-wave microwave emission.
The infidelity of typical quantum gate operations due to the phase noise of this cryogenic 25-pW microwave source is less than 0.1% up to 10-ms evolution times.
arXiv Detail & Related papers (2021-03-13T04:51:53Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.