論文の概要: Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning
- arxiv url: http://arxiv.org/abs/2404.04139v1
- Date: Fri, 5 Apr 2024 14:37:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:45:42.559681
- Title: Precision Guided Approach to Mitigate Data Poisoning Attacks in Federated Learning
- Title(参考訳): フェデレーション学習におけるデータポジショニング攻撃軽減のための高精度指導手法
- Authors: K Naveen Kumar, C Krishna Mohan, Aravind Machiry,
- Abstract要約: フェデレートラーニング(Federated Learning, FL)は、参加者が共有機械学習モデルを集合的にトレーニングすることを可能にする、協調学習パラダイムである。
データ中毒攻撃に対する現在のFL防衛戦略は、正確性と堅牢性の間のトレードオフを含む。
本稿では、FLにおけるデータ中毒攻撃を効果的に対処するために、ゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
- 参考スコア(独自算出の注目度): 4.907460152017894
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a collaborative learning paradigm enabling participants to collectively train a shared machine learning model while preserving the privacy of their sensitive data. Nevertheless, the inherent decentralized and data-opaque characteristics of FL render its susceptibility to data poisoning attacks. These attacks introduce malformed or malicious inputs during local model training, subsequently influencing the global model and resulting in erroneous predictions. Current FL defense strategies against data poisoning attacks either involve a trade-off between accuracy and robustness or necessitate the presence of a uniformly distributed root dataset at the server. To overcome these limitations, we present FedZZ, which harnesses a zone-based deviating update (ZBDU) mechanism to effectively counter data poisoning attacks in FL. Further, we introduce a precision-guided methodology that actively characterizes these client clusters (zones), which in turn aids in recognizing and discarding malicious updates at the server. Our evaluation of FedZZ across two widely recognized datasets: CIFAR10 and EMNIST, demonstrate its efficacy in mitigating data poisoning attacks, surpassing the performance of prevailing state-of-the-art methodologies in both single and multi-client attack scenarios and varying attack volumes. Notably, FedZZ also functions as a robust client selection strategy, even in highly non-IID and attack-free scenarios. Moreover, in the face of escalating poisoning rates, the model accuracy attained by FedZZ displays superior resilience compared to existing techniques. For instance, when confronted with a 50% presence of malicious clients, FedZZ sustains an accuracy of 67.43%, while the accuracy of the second-best solution, FL-Defender, diminishes to 43.36%.
- Abstract(参考訳): Federated Learning(FL)は、参加者が機密データのプライバシを保持しながら、共有マシンラーニングモデルを集合的にトレーニングすることを可能にする、共同学習パラダイムである。
それにもかかわらず、FLの本質的な分散化およびデータ不透明な特性は、データ中毒攻撃に対する感受性を示す。
これらの攻撃は、局所的なモデルトレーニング中に不正または悪意のある入力を導入し、その後、グローバルモデルに影響を与え、誤った予測をもたらす。
データ中毒攻撃に対する現在のFL防御戦略は、正確性と堅牢性の間のトレードオフを伴うか、あるいはサーバに均一に分散されたルートデータセットの存在を必要とする。
これらの制限を克服するために、FLにおけるデータ中毒攻撃を効果的に対処するためにゾーンベースの退避更新(ZBDU)機構を利用するFedZZを提案する。
さらに、これらのクライアントクラスタ(ゾーン)を積極的に特徴付ける精度誘導手法を導入し、サーバにおける悪意ある更新の認識と破棄を支援する。
CIFAR10とEMNISTの2つの広く知られているデータセットにおけるFedZZの評価は、データ中毒の軽減効果を実証し、単一および複数クライアントの攻撃シナリオと様々な攻撃ボリュームにおける最先端の手法の性能を上回った。
特に、FedZZは、高度に非IIDおよびアタックフリーシナリオであっても、堅牢なクライアント選択戦略として機能する。
さらに, 毒性率の増大に直面して, FedZZにより得られたモデル精度は, 既存技術に比べて優れたレジリエンスを示した。
例えば、悪意のあるクライアントが50%存在する場合、FedZZは67.43%の精度を保ち、第2位のソリューションであるFL-Defenderの精度は43.36%に低下する。
関連論文リスト
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Mitigating Malicious Attacks in Federated Learning via Confidence-aware Defense [3.685395311534351]
Federated Learning(FL)は、分散機械学習ダイアグラムで、複数のクライアントがプライベートなローカルデータを共有せずに、グローバルモデルを協調的にトレーニングすることができる。
FLシステムは、データ中毒やモデル中毒を通じて悪意のあるクライアントで起こっている攻撃に対して脆弱である。
既存の防御方法は通常、特定の種類の中毒を緩和することに焦点を当てており、しばしば目に見えないタイプの攻撃に対して効果がない。
論文 参考訳(メタデータ) (2024-08-05T20:27:45Z) - Defending Against Sophisticated Poisoning Attacks with RL-based Aggregation in Federated Learning [12.352511156767338]
フェデレート学習は、毒殺攻撃のモデル化に非常に影響を受けやすい。
本稿では,RLに基づくアダプティブアグリゲーション手法であるAdaAggRLを提案する。
4つの実世界のデータセットの実験により、提案された防衛モデルは高度な攻撃に対して広く採用されている防衛モデルよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-06-20T11:33:14Z) - Fed-Credit: Robust Federated Learning with Credibility Management [18.349127735378048]
Federated Learning(FL)は、分散デバイスやデータソースのモデルトレーニングを可能にする、新興の機械学習アプローチである。
我々は、Fed-Creditと呼ばれる信頼性管理手法に基づく堅牢なFLアプローチを提案する。
その結果、比較的低い計算複雑性を維持しながら、敵攻撃に対する精度とレジリエンスが向上した。
論文 参考訳(メタデータ) (2024-05-20T03:35:13Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Towards Attack-tolerant Federated Learning via Critical Parameter
Analysis [85.41873993551332]
フェデレートされた学習システムは、悪意のあるクライアントが中央サーバーに誤ったアップデートを送信すると、攻撃を害するおそれがある。
本稿では,新たな防衛戦略であるFedCPA(Federated Learning with critical Analysis)を提案する。
攻撃耐性凝集法は, 有害局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒局所モデルでは有毒であるのに対し, 類似したトップkおよびボトムk臨界パラメータを持つ。
論文 参考訳(メタデータ) (2023-08-18T05:37:55Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FL-Defender: Combating Targeted Attacks in Federated Learning [7.152674461313707]
フェデレートラーニング(FL)は、グローバル機械学習モデルを、参加する労働者のセット間で分散されたローカルデータから学習することを可能にする。
FLは、学習モデルの完全性に悪影響を及ぼす標的の毒殺攻撃に対して脆弱である。
FL標的攻撃に対抗する手段として,textitFL-Defenderを提案する。
論文 参考訳(メタデータ) (2022-07-02T16:04:46Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
我々は、トレーニングデータの品質の重要性を強調する堅牢な機械学習モデルに対して、これまで認識されていなかった脅威を提示します。
本稿では,二段階最適化に基づく新たなデータ中毒攻撃法を提案し,ロバストな分類器のロバスト性を保証する。
我々の攻撃は、被害者が最先端のロバストな訓練方法を用いて、ゼロからモデルを訓練しても効果的である。
論文 参考訳(メタデータ) (2020-12-02T15:30:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。