論文の概要: Noisy Label Processing for Classification: A Survey
- arxiv url: http://arxiv.org/abs/2404.04159v1
- Date: Fri, 5 Apr 2024 15:11:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:45:42.552026
- Title: Noisy Label Processing for Classification: A Survey
- Title(参考訳): 分類のためのノイズラベル処理:サーベイ
- Authors: Mengting Li, Chuang Zhu,
- Abstract要約: 長い、退屈なデータアノテーションのプロセスでは、アノテーションはミスをしがちで、画像のラベルが正しくない。
コンピュータビジョンタスク、特に分類タスクにおいて、ノイズの多いラベルと戦うことが不可欠である。
実世界のデータで導かれる合成ラベルノイズパターンを生成するアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.8821062918162146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, deep neural networks (DNNs) have gained remarkable achievement in computer vision tasks, and the success of DNNs often depends greatly on the richness of data. However, the acquisition process of data and high-quality ground truth requires a lot of manpower and money. In the long, tedious process of data annotation, annotators are prone to make mistakes, resulting in incorrect labels of images, i.e., noisy labels. The emergence of noisy labels is inevitable. Moreover, since research shows that DNNs can easily fit noisy labels, the existence of noisy labels will cause significant damage to the model training process. Therefore, it is crucial to combat noisy labels for computer vision tasks, especially for classification tasks. In this survey, we first comprehensively review the evolution of different deep learning approaches for noisy label combating in the image classification task. In addition, we also review different noise patterns that have been proposed to design robust algorithms. Furthermore, we explore the inner pattern of real-world label noise and propose an algorithm to generate a synthetic label noise pattern guided by real-world data. We test the algorithm on the well-known real-world dataset CIFAR-10N to form a new real-world data-guided synthetic benchmark and evaluate some typical noise-robust methods on the benchmark.
- Abstract(参考訳): 近年、ディープニューラルネットワーク(DNN)はコンピュータビジョンタスクにおいて顕著な成果を上げており、DNNの成功はしばしばデータの豊かさに大きく依存している。
しかし、データの獲得プロセスと高品質な地上真実は、多くの人力とお金を必要とします。
長い、退屈なデータアノテーションのプロセスでは、アノテータは誤りを犯しがちであり、結果として画像の誤ラベル、すなわちノイズラベルが生じる。
ノイズラベルの出現は避けられない。
さらに、DNNがノイズラベルに容易に適合できることが研究によって示されているので、ノイズラベルの存在はモデルトレーニングプロセスに大きなダメージを与えることになる。
したがって,コンピュータビジョンタスク,特に分類タスクにおいて,ノイズの多いラベルと戦うことが重要である。
本研究ではまず,画像分類タスクにおけるノイズラベルの競合に対する様々なディープラーニング手法の進化について概観的に検討する。
さらに、ロバストなアルゴリズムを設計するために提案された様々なノイズパターンについても検討する。
さらに,実世界のラベルノイズの内部パターンを探索し,実世界のデータによって誘導される合成ラベルノイズパターンを生成するアルゴリズムを提案する。
我々は、このアルゴリズムをよく知られた実世界のデータセットCIFAR-10N上でテストし、新しい実世界のデータ誘導合成ベンチマークを作成し、そのベンチマークで典型的なノイズロス法を評価する。
関連論文リスト
- Group Benefits Instances Selection for Data Purification [21.977432359384835]
ラベルノイズと戦う既存の方法は通常、合成データセット上で設計およびテストされる。
本稿では,合成および実世界の両方のデータセットに対するノイズラベル問題を緩和するGRIPという手法を提案する。
論文 参考訳(メタデータ) (2024-03-23T03:06:19Z) - NoisywikiHow: A Benchmark for Learning with Real-world Noisy Labels in
Natural Language Processing [26.678589684142548]
実世界の大規模なデータセットには、必然的にラベルノイズが伴う。
ディープモデルはノイズの多いラベルに徐々に適合し、一般化性能を低下させる。
ラベルノイズの影響を軽減するため,雑音ラベル法(LNL)による学習は,より優れた一般化性能を実現するために設計されている。
論文 参考訳(メタデータ) (2023-05-18T05:01:04Z) - Rethinking the Value of Labels for Instance-Dependent Label Noise
Learning [43.481591776038144]
実世界のアプリケーションにおけるノイズの多いラベルは、しばしば真のラベルと機能の両方に依存します。
本研究では、ノイズ遷移行列を明示的にモデル化しない新しい深層生成モデルを用いて、インスタンス依存ラベルノイズに対処する。
提案アルゴリズムは,カジュアルな表現学習を活用し,データから高レベルのコンテンツとスタイルの潜伏要素を同時に識別する。
論文 参考訳(メタデータ) (2023-05-10T15:29:07Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Is BERT Robust to Label Noise? A Study on Learning with Noisy Labels in
Text Classification [23.554544399110508]
トレーニングデータの誤りラベルは、人間のアノテータがミスをしたときや、弱いまたは遠い監視によってデータが生成されるときに発生する。
複雑なノイズハンドリング技術は、モデルがこのラベルノイズに収まらないようにする必要があることが示されている。
BERTのような現代のNLPモデルを用いたテキスト分類タスクにおいて、様々なノイズタイプに対して、既存のノイズハンドリング手法は必ずしも性能を向上せず、さらに劣化する可能性があることを示す。
論文 参考訳(メタデータ) (2022-04-20T10:24:19Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
ノイズラベルを用いた学習に関する既存の研究は、主に合成ラベルノイズに焦点を当てている。
本研究は2つの新しいベンチマークデータセット(CIFAR-10N, CIFAR-100N)を示す。
実世界のノイズラベルは古典的に採用されたクラス依存のラベルではなく、インスタンス依存のパターンに従うことを示す。
論文 参考訳(メタデータ) (2021-10-22T22:42:11Z) - Instance-dependent Label-noise Learning under a Structural Causal Model [92.76400590283448]
ラベルノイズはディープラーニングアルゴリズムの性能を劣化させる。
構造因果モデルを活用することにより,実例依存型ラベルノイズ学習のための新しい生成手法を提案する。
論文 参考訳(メタデータ) (2021-09-07T10:42:54Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Noisy Labels Can Induce Good Representations [53.47668632785373]
アーキテクチャがノイズラベルによる学習に与える影響について検討する。
ノイズラベルを用いたトレーニングは,モデルが一般化に乏しい場合でも,有用な隠れ表現を誘導できることを示す。
この発見は、騒々しいラベルで訓練されたモデルを改善する簡単な方法につながります。
論文 参考訳(メタデータ) (2020-12-23T18:58:05Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。