論文の概要: Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection
- arxiv url: http://arxiv.org/abs/2404.04188v1
- Date: Fri, 5 Apr 2024 16:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:35:54.863937
- Title: Reliable Feature Selection for Adversarially Robust Cyber-Attack Detection
- Title(参考訳): 逆ロバストサイバーアタック検出のための信頼性の高い特徴選択
- Authors: João Vitorino, Miguel Silva, Eva Maia, Isabel Praça,
- Abstract要約: この研究は、複数のメソッドを組み合わせて複数のネットワークデータセットに適用する機能選択とコンセンサスプロセスを示す。
データ多様性が向上し、最高の時間関連機能とより具体的な機能セットを選択し、敵のトレーニングを実行することで、MLモデルはより逆向きに堅牢な一般化を実現することができた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The growing cybersecurity threats make it essential to use high-quality data to train Machine Learning (ML) models for network traffic analysis, without noisy or missing data. By selecting the most relevant features for cyber-attack detection, it is possible to improve both the robustness and computational efficiency of the models used in a cybersecurity system. This work presents a feature selection and consensus process that combines multiple methods and applies them to several network datasets. Two different feature sets were selected and were used to train multiple ML models with regular and adversarial training. Finally, an adversarial evasion robustness benchmark was performed to analyze the reliability of the different feature sets and their impact on the susceptibility of the models to adversarial examples. By using an improved dataset with more data diversity, selecting the best time-related features and a more specific feature set, and performing adversarial training, the ML models were able to achieve a better adversarially robust generalization. The robustness of the models was significantly improved without their generalization to regular traffic flows being affected, without increases of false alarms, and without requiring too many computational resources, which enables a reliable detection of suspicious activity and perturbed traffic flows in enterprise computer networks.
- Abstract(参考訳): サイバーセキュリティの脅威が高まっているため、ノイズや欠落したデータなしに、高品質なデータを使用して機械学習(ML)モデルをトレーニングすることが不可欠である。
サイバー攻撃検出の最も関連性の高い特徴を選択することで、サイバーセキュリティシステムで使用されるモデルの堅牢性と計算効率を改善することができる。
この研究は、複数のメソッドを組み合わせて複数のネットワークデータセットに適用する機能選択とコンセンサスプロセスを示す。
2つの異なる特徴セットが選択され、複数のMLモデルを正規および敵の訓練で訓練するために使用された。
最後に、異なる特徴集合の信頼性と、それらのモデルが敵の例に対する感受性に与える影響を分析するために、逆回避頑健性ベンチマークを実施した。
データ多様性が向上し、最高の時間関連機能とより具体的な機能セットを選択し、敵のトレーニングを実行することで、MLモデルはより逆向きに堅牢な一般化を実現することができた。
モデルのロバスト性は、通常のトラフィックフローへの一般化、誤報の増加、計算資源の多さを伴わずに大幅に改善され、エンタープライズコンピュータネットワークにおける不審な活動や乱れのあるトラフィックフローの確実な検出を可能にした。
関連論文リスト
- INTELLECT: Adapting Cyber Threat Detection to Heterogeneous Computing Environments [0.055923945039144884]
本稿では,IDSのための事前学習MLモデルと構成の動的適応のための結合パイプラインに,特徴選択,モデルプルーニング,微調整技術を統合する新しいソリューションであるINTELLECTを紹介する。
我々は,知識蒸留技術を微調整中に組み込むことの利点を実証し,MLモデルが歴史的知識を維持しつつ,局所的なネットワークパターンに一貫して適応できることを示す。
論文 参考訳(メタデータ) (2024-07-17T22:34:29Z) - Efficient Network Traffic Feature Sets for IoT Intrusion Detection [0.0]
この研究は、複数のIoTネットワークデータセットで、Information Gain、Chi-Squared Test、Recursive Feature Elimination、Mean Absolute Deviation、Dispersion Ratioといった、さまざまな機能選択メソッドの組み合わせによって提供される機能セットを評価します。
より小さな特徴セットがMLモデルの分類性能とトレーニング時間の両方に与える影響を比較し,IoT侵入検出の計算効率を高めることを目的とした。
論文 参考訳(メタデータ) (2024-06-12T09:51:29Z) - An Adversarial Robustness Benchmark for Enterprise Network Intrusion
Detection [0.0]
RF, XGB, LGBM, EBMモデルの定常的, 対角的に訓練されたロバスト性を評価した。
NewCICIDSは、特にXGBとEBMの性能向上に繋がったが、RFとLGBMはHIKARIのサイバー攻撃に対してより堅牢ではなかった。
論文 参考訳(メタデータ) (2024-02-25T16:45:39Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
本研究では,アンサンブルに基づく機械学習による車両ネットワークにおけるサイバー脅威の検出について検討する。
我々は,Random Forest と CatBoost を主要な研究者として用いたモデルを提案し,ロジスティック回帰を用いて最終的な決定を下す。
我々は,本手法が分類精度を向上し,過去の研究に比べて誤分類が少ないことを観察した。
論文 参考訳(メタデータ) (2023-12-08T10:39:18Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - A Dependable Hybrid Machine Learning Model for Network Intrusion
Detection [1.222622290392729]
本稿では,機械学習とディープラーニングを組み合わせたハイブリッドモデルを提案する。
提案手法は,KDDCUP'99とCIC-MalMem-2022の2つのデータセットでテストした場合,優れた結果が得られる。
論文 参考訳(メタデータ) (2022-12-08T20:19:27Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
本稿では,予測の多様性を奨励することで,ニューラルネットワークの効果的なアンサンブルを生成する問題をターゲットにする。
そこで本研究では,潜伏変数の学習における逆損失の多様性を明示的に最適化し,マルチモーダルデータのモデリングに必要な出力予測の多様性を得る。
最も競争力のあるベースラインと比較して、データ分布の変化の下で、分類精度が大幅に向上した。
論文 参考訳(メタデータ) (2020-03-10T03:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。