論文の概要: Image-Text Co-Decomposition for Text-Supervised Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2404.04231v1
- Date: Fri, 5 Apr 2024 17:25:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-08 15:55:28.087755
- Title: Image-Text Co-Decomposition for Text-Supervised Semantic Segmentation
- Title(参考訳): テキストスーパービジョンセマンティックセマンティックセグメンテーションのための画像テキスト共分解
- Authors: Ji-Jia Wu, Andy Chia-Hao Chang, Chieh-Yu Chuang, Chun-Pei Chen, Yu-Lun Liu, Min-Hung Chen, Hou-Ning Hu, Yung-Yu Chuang, Yen-Yu Lin,
- Abstract要約: 本稿では,高密度アノテーションを伴わない画像テキストペアのみを用いて,画像内の任意の視覚概念をセグメント化できるモデルを学習することを目的とする。
既存の手法では、画像とテキストのペアにおけるコントラスト学習が、視覚セグメントとテキストの意味を効果的に一致させることが示されている。
テキストはしばしば複数の意味概念で構成され、セマンティックセグメンテーションは意味的に同質なセグメンテーションを作成する。
- 参考スコア(独自算出の注目度): 28.24883865053459
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses text-supervised semantic segmentation, aiming to learn a model capable of segmenting arbitrary visual concepts within images by using only image-text pairs without dense annotations. Existing methods have demonstrated that contrastive learning on image-text pairs effectively aligns visual segments with the meanings of texts. We notice that there is a discrepancy between text alignment and semantic segmentation: A text often consists of multiple semantic concepts, whereas semantic segmentation strives to create semantically homogeneous segments. To address this issue, we propose a novel framework, Image-Text Co-Decomposition (CoDe), where the paired image and text are jointly decomposed into a set of image regions and a set of word segments, respectively, and contrastive learning is developed to enforce region-word alignment. To work with a vision-language model, we present a prompt learning mechanism that derives an extra representation to highlight an image segment or a word segment of interest, with which more effective features can be extracted from that segment. Comprehensive experimental results demonstrate that our method performs favorably against existing text-supervised semantic segmentation methods on six benchmark datasets.
- Abstract(参考訳): 本稿では,高密度アノテーションを伴わない画像テキストペアのみを用いて,画像内の任意の視覚概念をセグメント化できるモデルを学習することを目的としたテキスト教師ありセマンティックセマンティックセマンティックセマンティックセマンティクスについて述べる。
既存の手法では、画像とテキストのペアにおけるコントラスト学習が、視覚セグメントとテキストの意味を効果的に一致させることが示されている。
テキストアライメントとセマンティックセグメンテーションの間には相違点があることに気付く: テキストはしばしば複数のセマンティックな概念から構成されるが、セマンティックセグメンテーションはセマンティックに同質なセグメンテーションを作成するために努力する。
この問題に対処するために,画像とテキストを画像領域と単語セグメントの集合に分割する新しいフレームワークである画像テキスト共分解(CoDe)を提案する。
視覚言語モデルを扱うために、画像セグメントや単語セグメントをハイライトする余分な表現を導出する素早い学習機構を提案し、そのセグメントからより効果的な特徴を抽出する。
総合的な実験結果から,提案手法は6つのベンチマークデータセット上で既存のテキスト教師付きセマンティックセマンティックセマンティクス法に対して良好に機能することが示された。
関連論文リスト
- Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Text-guided Image Restoration and Semantic Enhancement for Text-to-Image Person Retrieval [11.798006331912056]
テキスト・ツー・イメージ・パーソナリティ検索(TIPR)の目的は、与えられたテキスト記述に従って特定の人物画像を取得することである。
本稿では,人物画像と対応するテキスト間のきめ細かいインタラクションとアライメントを構築するための新しいTIPRフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-18T08:23:46Z) - Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal
Contrastive Training [33.78990448307792]
画像テキスト検索は、視覚と言語間の意味的関係を理解するための中心的な問題である。
以前の作品では、全体像とテキストの粗い粒度の表現を単に学習するか、画像領域またはピクセルとテキストワードの対応を精巧に確立する。
本研究では、粗い表現学習ときめ細かい表現学習を統一した枠組みに組み合わせて、新しい視点から画像テキストの検索を行う。
論文 参考訳(メタデータ) (2023-06-15T00:19:13Z) - Associating Spatially-Consistent Grouping with Text-supervised Semantic
Segmentation [117.36746226803993]
テキスト教師付きセマンティックセグメンテーションを用いた自己教師付き空間一貫性グループ化を提案する。
部分的なグループ化結果を考えると、さらに画像レベルから領域レベルへのテキスト教師付きモデルを適用する。
59.2% mIoU と 32.4% mIoU を Pascal VOC および Pascal Context ベンチマークで達成した。
論文 参考訳(メタデータ) (2023-04-03T16:24:39Z) - CAT-Seg: Cost Aggregation for Open-Vocabulary Semantic Segmentation [56.58365347854647]
私たちは、視覚言語基盤モデル、特にCLIPを適応するためのコストベースの新しいアプローチを導入します。
エンコーダの微調整により,CLIPをセグメント化,未確認のクラスに適応させる手法を提案する。
論文 参考訳(メタデータ) (2023-03-21T12:28:21Z) - ViewCo: Discovering Text-Supervised Segmentation Masks via Multi-View
Semantic Consistency [126.88107868670767]
テキスト教師付きセマンティックセグメンテーションのためのマルチテキストbfView textbfConsistent Learning (ViewCo)を提案する。
まず,同じ入力画像の複数ビューに対する対応性を学習するためのテキスト・ツー・ビュー整合性モデリングを提案する。
また,テキスト管理の曖昧性問題に対処するために,クロスビューセグメンテーション整合性モデリングを提案する。
論文 参考訳(メタデータ) (2023-01-31T01:57:52Z) - Learning to Generate Text-grounded Mask for Open-world Semantic
Segmentation from Only Image-Text Pairs [10.484851004093919]
我々は,任意の視覚概念をイメージに分割する学習を目的とした,オープンワールドセマンティックセマンティックセマンティックセマンティクスに取り組む。
既存のオープンワールドセグメンテーション手法は、多様な視覚概念を学習するためにコントラッシブラーニング(CL)を採用することで、目覚ましい進歩を見せている。
そこで本研究では,モデルが地域テキストアライメントを直接学習することのできる,新しいテキストグラウンド・コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-01T18:59:03Z) - Open-world Semantic Segmentation via Contrasting and Clustering
Vision-Language Embedding [95.78002228538841]
本研究では,様々なオープンワールドカテゴリのセマンティックオブジェクトを高密度アノテーションを使わずにセマンティックオブジェクトのセマンティックオブジェクトのセマンティック化を学習するための,新しいオープンワールドセマンティックセマンティックセマンティックセマンティクスパイプラインを提案する。
提案手法は任意のカテゴリのオブジェクトを直接分割し、3つのベンチマークデータセット上でデータラベリングを必要とするゼロショットセグメンテーション法より優れている。
論文 参考訳(メタデータ) (2022-07-18T09:20:04Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
エンドツーエンドのCLIP駆動参照画像フレームワーク(CRIS)を提案する。
CRISは、テキストとピクセルのアライメントを達成するために、視覚言語によるデコーディングとコントラスト学習に頼っている。
提案するフレームワークは, 後処理を伴わずに, 最先端の性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-11-30T07:29:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。