GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console
- URL: http://arxiv.org/abs/2404.04299v1
- Date: Thu, 4 Apr 2024 20:53:30 GMT
- Title: GENEVIC: GENetic data Exploration and Visualization via Intelligent interactive Console
- Authors: Anindita Nath, Savannah Mwesigwa, Yulin Dai, Xiaoqian Jiang, Zhongming Zhao,
- Abstract summary: GENEVIC is an AI-driven chat framework that bridges the gap between genetic data generation and biomedical knowledge discovery.
It automates the analysis, retrieval, and visualization of customized domain-specific genetic information.
It integrates functionalities to generate protein interaction networks, enrich gene sets, and search scientific literature from PubMed, Google Scholar, and arXiv.
- Score: 6.786793669890866
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Summary: The vast generation of genetic data poses a significant challenge in efficiently uncovering valuable knowledge. Introducing GENEVIC, an AI-driven chat framework that tackles this challenge by bridging the gap between genetic data generation and biomedical knowledge discovery. Leveraging generative AI, notably ChatGPT, it serves as a biologist's 'copilot'. It automates the analysis, retrieval, and visualization of customized domain-specific genetic information, and integrates functionalities to generate protein interaction networks, enrich gene sets, and search scientific literature from PubMed, Google Scholar, and arXiv, making it a comprehensive tool for biomedical research. In its pilot phase, GENEVIC is assessed using a curated database that ranks genetic variants associated with Alzheimer's disease, schizophrenia, and cognition, based on their effect weights from the Polygenic Score Catalog, thus enabling researchers to prioritize genetic variants in complex diseases. GENEVIC's operation is user-friendly, accessible without any specialized training, secured by Azure OpenAI's HIPAA-compliant infrastructure, and evaluated for its efficacy through real-time query testing. As a prototype, GENEVIC is set to advance genetic research, enabling informed biomedical decisions. Availability and implementation: GENEVIC is publicly accessible at https://genevic-anath2024.streamlit.app. The underlying code is open-source and available via GitHub at https://github.com/anath2110/GENEVIC.git.
Related papers
- BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Toward a Team of AI-made Scientists for Scientific Discovery from Gene
Expression Data [9.767546641019862]
We introduce a novel framework, a Team of AI-made Scientists (TAIS), designed to streamline the scientific discovery pipeline.
TAIS comprises simulated roles, including a project manager, data engineer, and domain expert, each represented by a Large Language Model (LLM)
These roles collaborate to replicate the tasks typically performed by data scientists, with a specific focus on identifying disease-predictive genes.
arXiv Detail & Related papers (2024-02-15T06:30:12Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
We develop an attention-enhanced graph autoencoder, which is designed to efficiently capture the topological features between cells.
During the clustering process, we integrated both sets of information and reconstructed the features of both cells and genes to generate a discriminative representation.
This research offers enhanced insights into the characteristics and distribution of cells, thereby laying the groundwork for early diagnosis and treatment of diseases.
arXiv Detail & Related papers (2023-11-28T09:14:55Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - Applying BioBERT to Extract Germline Gene-Disease Associations for Building a Knowledge Graph from the Biomedical Literature [0.0]
This paper presents SimpleGermKG, an automatic knowledge graph construction approach that connects germline genes and diseases.
For the extraction of genes and diseases, we employ BioBERT, a pre-trained BERT model on biomedical corpora.
For semantic relationships between articles, genes, and diseases, we implemented a part-whole relation approach.
Our knowledge graph contains 297 genes, 130 diseases, and 46,747 triples.
arXiv Detail & Related papers (2023-09-11T18:05:12Z) - Genetic heterogeneity analysis using genetic algorithm and network
science [2.6166087473624318]
Genome-wide association studies (GWAS) can identify disease susceptible genetic variables.
Genetic variables intertwined with genetic effects often exhibit lower effect-size.
This paper introduces a novel feature selection mechanism for GWAS, named Feature Co-selection Network (FCSNet)
arXiv Detail & Related papers (2023-08-12T01:28:26Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - DeepProphet2 -- A Deep Learning Gene Recommendation Engine [0.0]
The paper discusses the potential advantages of gene recommendation performed by artificial intelligence (AI)
A transformer-based model has been trained on a well-curated freely available paper corpus, PubMed.
A set of use cases illustrates the algorithm's potential applications in a real word setting.
arXiv Detail & Related papers (2022-08-03T08:54:13Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - A Semi-Supervised Generative Adversarial Network for Prediction of
Genetic Disease Outcomes [0.0]
We introduce genetic Generative Adversarial Networks (gGAN) to create large synthetic genetic data sets.
Our goal is to determine the propensity of a new individual to develop the severe form of the illness from their genetic profile alone.
The proposed model is self-aware and capable of determining whether a new genetic profile has enough compatibility with the data on which the network was trained.
arXiv Detail & Related papers (2020-07-02T15:35:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.