JobFormer: Skill-Aware Job Recommendation with Semantic-Enhanced Transformer
- URL: http://arxiv.org/abs/2404.04313v1
- Date: Fri, 5 Apr 2024 12:25:00 GMT
- Title: JobFormer: Skill-Aware Job Recommendation with Semantic-Enhanced Transformer
- Authors: Zhihao Guan, Jia-Qi Yang, Yang Yang, Hengshu Zhu, Wenjie Li, Hui Xiong,
- Abstract summary: Job recommendation aims to provide potential talents with suitable job descriptions consistent with their career trajectory.
In real-world management scenarios, the available JD-user records always consist of JDs, user profiles, and click data.
We propose a novel skill-aware recommendation model based on the designed semantic-enhanced transformer to parse JDs and complete personalized job recommendation.
- Score: 36.695509840067906
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Job recommendation aims to provide potential talents with suitable job descriptions (JDs) consistent with their career trajectory, which plays an essential role in proactive talent recruitment. In real-world management scenarios, the available JD-user records always consist of JDs, user profiles, and click data, in which the user profiles are typically summarized as the user's skill distribution for privacy reasons. Although existing sophisticated recommendation methods can be directly employed, effective recommendation still has challenges considering the information deficit of JD itself and the natural heterogeneous gap between JD and user profile. To address these challenges, we proposed a novel skill-aware recommendation model based on the designed semantic-enhanced transformer to parse JDs and complete personalized job recommendation. Specifically, we first model the relative items of each JD and then adopt an encoder with the local-global attention mechanism to better mine the intra-job and inter-job dependencies from JD tuples. Moreover, we adopt a two-stage learning strategy for skill-aware recommendation, in which we utilize the skill distribution to guide JD representation learning in the recall stage, and then combine the user profiles for final prediction in the ranking stage. Consequently, we can embed rich contextual semantic representations for learning JDs, while skill-aware recommendation provides effective JD-user joint representation for click-through rate (CTR) prediction. To validate the superior performance of our method for job recommendation, we present a thorough empirical analysis of large-scale real-world and public datasets to demonstrate its effectiveness and interpretability.
Related papers
- Preference Diffusion for Recommendation [50.8692409346126]
We propose PreferDiff, a tailored optimization objective for DM-based recommenders.
PreferDiff transforms BPR into a log-likelihood ranking objective to better capture user preferences.
It is the first personalized ranking loss designed specifically for DM-based recommenders.
arXiv Detail & Related papers (2024-10-17T01:02:04Z) - T-JEPA: Augmentation-Free Self-Supervised Learning for Tabular Data [0.0]
Self-supervised learning (SSL) generally involves generating different views of the same sample and thus requires data augmentations.
In the present work, we propose a novel augmentation-free SSL method for structured data.
Our approach, T-JEPA, relies on a Joint Embedding Predictive Architecture (JEPA) and is akin to mask reconstruction in the latent space.
arXiv Detail & Related papers (2024-10-07T13:15:07Z) - Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application [54.984348122105516]
Large Language Models (LLMs) pretrained on massive text corpus presents a promising avenue for enhancing recommender systems.
We propose an Llm-driven knowlEdge Adaptive RecommeNdation (LEARN) framework that synergizes open-world knowledge with collaborative knowledge.
arXiv Detail & Related papers (2024-05-07T04:00:30Z) - Cross-Domain Causal Preference Learning for Out-of-Distribution Recommendation [0.8315707564931466]
Current recommender systems rely on the assumption that the training and testing datasets have identical distributions.
This study proposes a novel model called Cross-Domain Causal Preference Learning for Out-of-Distribution Recommendation (CDCOR)
arXiv Detail & Related papers (2024-04-23T09:21:15Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - Uncertainty-Aware Explainable Recommendation with Large Language Models [15.229417987212631]
We develop a model that utilizes the ID vectors of user and item inputs as prompts for GPT-2.
We employ a joint training mechanism within a multi-task learning framework to optimize both the recommendation task and explanation task.
Our method achieves 1.59 DIV, 0.57 USR and 0.41 FCR on the Yelp, TripAdvisor and Amazon dataset respectively.
arXiv Detail & Related papers (2024-01-31T14:06:26Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Generative Job Recommendations with Large Language Model [32.99532175346021]
GIRL (GeneratIve job Recommendation based on Large language models) is a novel approach inspired by recent advancements in the field of Large Language Models (LLMs)
We employ a Supervised Fine-Tuning (SFT) strategy to instruct the LLM-based generator in crafting suitable Job Descriptions (JDs) based on the Curriculum Vitae (CV) of a job seeker.
In particular, GIRL serves as a job seeker-centric generative model, providing job suggestions without the need of a candidate set.
arXiv Detail & Related papers (2023-07-05T09:58:08Z) - Toward a traceable, explainable, and fairJD/Resume recommendation system [10.820022470618234]
Development of an automatic recruitment system is still one of the main challenges.
Our aim is to explore how modern language models can be combined with knowledge bases and datasets to enhance the JD/Resume matching process.
arXiv Detail & Related papers (2022-02-02T18:17:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.