Adaptive Illumination based Depth Sensing using Deep Learning
- URL: http://arxiv.org/abs/2103.12297v1
- Date: Tue, 23 Mar 2021 04:21:07 GMT
- Title: Adaptive Illumination based Depth Sensing using Deep Learning
- Authors: Qiqin Dai, Fengqiang Li, Oliver Cossairt, and Aggelos K Katsaggelos
- Abstract summary: Various techniques have been proposed to estimate a dense depth map based on fusion of the sparse depth map measurement with the RGB image.
Recent advances in hardware enable adaptive depth measurements resulting in further improvement of the dense depth map estimation.
We show that such adaptive sampling masks can generalize well to many RGB and sparse depth fusion algorithms under a variety of sampling rates.
- Score: 18.72398843488572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dense depth map capture is challenging in existing active sparse illumination
based depth acquisition techniques, such as LiDAR. Various techniques have been
proposed to estimate a dense depth map based on fusion of the sparse depth map
measurement with the RGB image. Recent advances in hardware enable adaptive
depth measurements resulting in further improvement of the dense depth map
estimation. In this paper, we study the topic of estimating dense depth from
depth sampling. The adaptive sparse depth sampling network is jointly trained
with a fusion network of an RGB image and sparse depth, to generate optimal
adaptive sampling masks. We show that such adaptive sampling masks can
generalize well to many RGB and sparse depth fusion algorithms under a variety
of sampling rates (as low as $0.0625\%$). The proposed adaptive sampling method
is fully differentiable and flexible to be trained end-to-end with upstream
perception algorithms.
Related papers
- Progressive Depth Decoupling and Modulating for Flexible Depth Completion [28.693100885012008]
Image-guided depth completion aims at generating a dense depth map from sparse LiDAR data and RGB image.
Recent methods have shown promising performance by reformulating it as a classification problem with two sub-tasks: depth discretization and probability prediction.
We propose a progressive depth decoupling and modulating network, which incrementally decouples the depth range into bins and adaptively generates multi-scale dense depth maps.
arXiv Detail & Related papers (2024-05-15T13:45:33Z) - Robust Depth Enhancement via Polarization Prompt Fusion Tuning [112.88371907047396]
We present a framework that leverages polarization imaging to improve inaccurate depth measurements from various depth sensors.
Our method first adopts a learning-based strategy where a neural network is trained to estimate a dense and complete depth map from polarization data and a sensor depth map from different sensors.
To further improve the performance, we propose a Polarization Prompt Fusion Tuning (PPFT) strategy to effectively utilize RGB-based models pre-trained on large-scale datasets.
arXiv Detail & Related papers (2024-04-05T17:55:33Z) - Symmetric Uncertainty-Aware Feature Transmission for Depth
Super-Resolution [52.582632746409665]
We propose a novel Symmetric Uncertainty-aware Feature Transmission (SUFT) for color-guided DSR.
Our method achieves superior performance compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-06-01T06:35:59Z) - RGB-Depth Fusion GAN for Indoor Depth Completion [29.938869342958125]
In this paper, we design a novel two-branch end-to-end fusion network, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map.
In one branch, we propose an RGB-depth fusion GAN to transfer the RGB image to the fine-grained textured depth map.
In the other branch, we adopt adaptive fusion modules named W-AdaIN to propagate the features across the two branches.
arXiv Detail & Related papers (2022-03-21T10:26:38Z) - Joint Learning of Salient Object Detection, Depth Estimation and Contour
Extraction [91.43066633305662]
We propose a novel multi-task and multi-modal filtered transformer (MMFT) network for RGB-D salient object detection (SOD)
Specifically, we unify three complementary tasks: depth estimation, salient object detection and contour estimation. The multi-task mechanism promotes the model to learn the task-aware features from the auxiliary tasks.
Experiments show that it not only significantly surpasses the depth-based RGB-D SOD methods on multiple datasets, but also precisely predicts a high-quality depth map and salient contour at the same time.
arXiv Detail & Related papers (2022-03-09T17:20:18Z) - Differentiable Diffusion for Dense Depth Estimation from Multi-view
Images [31.941861222005603]
We present a method to estimate dense depth by optimizing a sparse set of points such that their diffusion into a depth map minimizes a multi-view reprojection error from RGB supervision.
We also develop an efficient optimization routine that can simultaneously optimize the 50k+ points required for complex scene reconstruction.
arXiv Detail & Related papers (2021-06-16T16:17:34Z) - Depth Completion using Plane-Residual Representation [84.63079529738924]
We introduce a novel way of interpreting depth information with the closest depth plane label $p$ and a residual value $r$, as we call it, Plane-Residual (PR) representation.
By interpreting depth information in PR representation and using our corresponding depth completion network, we were able to acquire improved depth completion performance with faster computation.
arXiv Detail & Related papers (2021-04-15T10:17:53Z) - Direct Depth Learning Network for Stereo Matching [79.3665881702387]
A novel Direct Depth Learning Network (DDL-Net) is designed for stereo matching.
DDL-Net consists of two stages: the Coarse Depth Estimation stage and the Adaptive-Grained Depth Refinement stage.
We show that DDL-Net achieves an average improvement of 25% on the SceneFlow dataset and $12%$ on the DrivingStereo dataset.
arXiv Detail & Related papers (2020-12-10T10:33:57Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - Depth Edge Guided CNNs for Sparse Depth Upsampling [18.659087667114274]
Guided sparse depth upsampling aims to upsample an irregularly sampled sparse depth map when an aligned high-resolution color image is given as guidance.
We propose a guided convolutional layer to recover dense depth from sparse and irregular depth image with an depth edge image as guidance.
We conduct comprehensive experiments to verify our method on real-world indoor and synthetic outdoor datasets.
arXiv Detail & Related papers (2020-03-23T08:56:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.