LOSS-SLAM: Lightweight Open-Set Semantic Simultaneous Localization and Mapping
- URL: http://arxiv.org/abs/2404.04377v1
- Date: Fri, 5 Apr 2024 19:42:55 GMT
- Title: LOSS-SLAM: Lightweight Open-Set Semantic Simultaneous Localization and Mapping
- Authors: Kurran Singh, Tim Magoun, John J. Leonard,
- Abstract summary: We show that a system of identifying, localizing, and encoding objects is tightly coupled with probabilistic graphical models for performing open-set semantic simultaneous localization and mapping (SLAM)
Results are presented demonstrating that the proposed lightweight object encoding can be used to perform more accurate object-based SLAM than existing open-set methods.
- Score: 9.289001828243512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Enabling robots to understand the world in terms of objects is a critical building block towards higher level autonomy. The success of foundation models in vision has created the ability to segment and identify nearly all objects in the world. However, utilizing such objects to localize the robot and build an open-set semantic map of the world remains an open research question. In this work, a system of identifying, localizing, and encoding objects is tightly coupled with probabilistic graphical models for performing open-set semantic simultaneous localization and mapping (SLAM). Results are presented demonstrating that the proposed lightweight object encoding can be used to perform more accurate object-based SLAM than existing open-set methods, closed-set methods, and geometric methods while incurring a lower computational overhead than existing open-set mapping methods.
Related papers
- Open-World Object Detection with Instance Representation Learning [1.8749305679160366]
We propose a method to train an object detector that can both detect novel objects and extract semantically rich features in open-world conditions.
Our method learns a robust and generalizable feature space, outperforming other OWOD-based feature extraction methods.
arXiv Detail & Related papers (2024-09-24T13:13:34Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - CLIP-Loc: Multi-modal Landmark Association for Global Localization in
Object-based Maps [0.16492989697868893]
This paper describes a multi-modal data association method for global localization using object-based maps and camera images.
We propose labeling landmarks with natural language descriptions and extracting correspondences based on conceptual similarity with image observations.
arXiv Detail & Related papers (2024-02-08T22:59:12Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - An Object SLAM Framework for Association, Mapping, and High-Level Tasks [12.62957558651032]
We present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks.
A range of public datasets and real-world results have been used to evaluate the proposed object SLAM framework for its efficient performance.
arXiv Detail & Related papers (2023-05-12T08:10:14Z) - Complex-Valued Autoencoders for Object Discovery [62.26260974933819]
We propose a distributed approach to object-centric representations: the Complex AutoEncoder.
We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets.
We also show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train.
arXiv Detail & Related papers (2022-04-05T09:25:28Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
We compare the error statistics of the class embeddings learned from a one-hot approach with semantically structured embeddings from natural language processing or knowledge graphs.
We propose a knowledge-embedded design for keypoint-based and transformer-based object detection architectures.
arXiv Detail & Related papers (2021-12-21T17:10:21Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
We propose a classification-free Object Localization Network (OLN) which estimates the objectness of each region purely by how well the location and shape of a region overlaps with any ground-truth object.
This simple strategy learns generalizable objectness and outperforms existing proposals on cross-category generalization.
arXiv Detail & Related papers (2021-08-15T14:36:02Z) - Semantic SLAM with Autonomous Object-Level Data Association [31.707650560075976]
semantic-level SLAM system can achieve high-accuracy object-level data association and real-time semantic mapping.
Online semantic map building and semantic-level localization capabilities facilitate semantic-level mapping and task planning in a priori unknown environment.
arXiv Detail & Related papers (2020-11-20T20:33:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.