論文の概要: RoNet: Rotation-oriented Continuous Image Translation
- arxiv url: http://arxiv.org/abs/2404.04474v1
- Date: Sat, 6 Apr 2024 02:08:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 21:08:32.783711
- Title: RoNet: Rotation-oriented Continuous Image Translation
- Title(参考訳): RoNet: ローテーション指向の連続画像変換
- Authors: Yi Li, Xin Xie, Lina Lei, Haiyan Fu, Yanqing Guo,
- Abstract要約: ドメイン間のスムーズで連続的な画像の生成は、最近画像から画像への変換(I2I)において大きな注目を集めている。
本稿では,新しい回転指向解を提案し,画像のスタイル表現上の面内回転による連続生成をモデル化する。
生成ネットワークに回転モジュールを埋め込んで、画像の内容とスタイルを遠ざけながら、適切な平面を自動的に学習する。
- 参考スコア(独自算出の注目度): 8.214116127367445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The generation of smooth and continuous images between domains has recently drawn much attention in image-to-image (I2I) translation. Linear relationship acts as the basic assumption in most existing approaches, while applied to different aspects including features, models or labels. However, the linear assumption is hard to conform with the element dimension increases and suffers from the limit that having to obtain both ends of the line. In this paper, we propose a novel rotation-oriented solution and model the continuous generation with an in-plane rotation over the style representation of an image, achieving a network named RoNet. A rotation module is implanted in the generation network to automatically learn the proper plane while disentangling the content and the style of an image. To encourage realistic texture, we also design a patch-based semantic style loss that learns the different styles of the similar object in different domains. We conduct experiments on forest scenes (where the complex texture makes the generation very challenging), faces, streetscapes and the iphone2dslr task. The results validate the superiority of our method in terms of visual quality and continuity.
- Abstract(参考訳): ドメイン間のスムーズで連続的な画像の生成は、最近イメージ・ツー・イメージ(I2I)翻訳において大きな注目を集めている。
線形関係は、ほとんどの既存のアプローチにおいて基本的な前提として機能し、特徴、モデル、ラベルを含む様々な側面に適用されます。
しかし、線型仮定は要素次元の増加に適合しにくく、ラインの両端を得る必要のある極限に苦しむ。
本稿では,画像のスタイル表現上での面内回転による連続生成をモデル化し,RoNetというネットワークを実現する。
生成ネットワークに回転モジュールを埋め込んで、画像の内容とスタイルを遠ざけながら、適切な平面を自動的に学習する。
現実的なテクスチャを促進するために、異なるドメインの類似オブジェクトの異なるスタイルを学ぶパッチベースのセマンティックスタイルの損失も設計する。
複雑なテクスチャが生成を非常に困難にする)、顔、街並み、およびiphone2dslrタスクについて実験を行う。
その結果,視覚的品質と連続性の観点から,本手法の優位性を検証した。
関連論文リスト
- SCONE-GAN: Semantic Contrastive learning-based Generative Adversarial
Network for an end-to-end image translation [18.93434486338439]
SCONE-GANはリアルで多様な風景画像を生成する学習に有効であることが示されている。
より現実的で多様な画像生成のために、スタイル参照画像を導入します。
画像から画像への変換と屋外画像のスタイリングのための提案アルゴリズムを検証した。
論文 参考訳(メタデータ) (2023-11-07T10:29:16Z) - Locally Stylized Neural Radiance Fields [30.037649804991315]
局所的なスタイル伝達に基づくニューラルレイディアンスフィールド(NeRF)のスタイリングフレームワークを提案する。
特に、ハッシュグリッド符号化を用いて外観や幾何学的要素の埋め込みを学習する。
提案手法は, 新規なビュー合成により, 可視なスタイリゼーション結果が得られることを示す。
論文 参考訳(メタデータ) (2023-09-19T15:08:10Z) - LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image
Generation [121.45667242282721]
レイアウト計画と画像生成を実現するための粗大なパラダイムを提案する。
提案手法は,フォトリアリスティックなレイアウトと画像生成の観点から,最先端のモデルよりも優れている。
論文 参考訳(メタデータ) (2023-08-09T17:45:04Z) - Masked and Adaptive Transformer for Exemplar Based Image Translation [16.93344592811513]
ドメイン間のセマンティックマッチングは難しい。
正確なクロスドメイン対応を学習するためのマスク付き適応変換器(MAT)を提案する。
品質識別型スタイル表現を得るための新しいコントラスト型スタイル学習法を考案する。
論文 参考訳(メタデータ) (2023-03-30T03:21:14Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
我々はRecRecNet(Rectangling Rectification Network)という新しい学習モデルを提案する。
我々のモデルは、ソース構造をターゲット領域に柔軟にワープし、エンドツーエンドの非教師なし変形を実現する。
実験により, 定量評価と定性評価の両面において, 比較法よりも解法の方が優れていることが示された。
論文 参考訳(メタデータ) (2023-01-04T15:12:57Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
制御可能な人物画像生成は、望ましい属性を持つ現実的な人間の画像を作成することを目的としている。
本稿では,学習フロー場とワープ変調パラメータを統合した空間適応型ワープ正規化(SAWN)を提案する。
本稿では,テクスチャ・トランスファータスクの事前学習モデルを洗練するための,新たな自己学習部分置換戦略を提案する。
論文 参考訳(メタデータ) (2021-05-31T07:07:44Z) - Drafting and Revision: Laplacian Pyramid Network for Fast High-Quality
Artistic Style Transfer [115.13853805292679]
アートスタイルの転送は、サンプルイメージからコンテンツイメージへのスタイルの移行を目的としている。
図案作成と細部改訂の共通画法に触発されて,ラプラシアンピラミッドネットワーク(LapStyle)という新しいフィードフォワード方式を導入する。
本手法は, 定型的パターンを適切に伝達した高品質なスタイリズド画像をリアルタイムで合成する。
論文 参考訳(メタデータ) (2021-04-12T11:53:53Z) - Unsupervised Discovery of Disentangled Manifolds in GANs [74.24771216154105]
解釈可能な生成プロセスは、様々な画像編集アプリケーションに有用である。
本稿では,任意の学習された生成逆数ネットワークが与えられた潜在空間における解釈可能な方向を検出する枠組みを提案する。
論文 参考訳(メタデータ) (2020-11-24T02:18:08Z) - Structural-analogy from a Single Image Pair [118.61885732829117]
本稿では,1対の画像A,Bのみを用いて,ニューラルネットワークによる画像構造理解能力について検討する。
我々は、B の外観とスタイルを保持するが、A に対応する構造的配置を持つ画像を生成する。
提案手法は,画像AとBのみを利用した条件生成タスクにおいて,高品質な画像を生成するために利用できる。
論文 参考訳(メタデータ) (2020-04-05T14:51:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。