論文の概要: Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner
- arxiv url: http://arxiv.org/abs/2404.04547v1
- Date: Sat, 6 Apr 2024 08:07:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:39:11.492917
- Title: Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner
- Title(参考訳): アンサンブル・マナーにおける癌検診における自然刺激型計算の露光
- Authors: Xubin Wang, Yunhe Wang, Zhiqing Ma, Ka-Chun Wong, Xiangtao Li,
- Abstract要約: 本研究では、遺伝子発現データからがん分類のためのアンサンブル学習を改善するために、進化最適化逆アンサンブル学習(EODE)と呼ばれるフレームワークを提案する。
各種癌種を含む35の遺伝子発現ベンチマークデータセットを対象に実験を行った。
- 参考スコア(独自算出の注目度): 20.07173196364489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate screening of cancer types is crucial for effective cancer detection and precise treatment selection. However, the association between gene expression profiles and tumors is often limited to a small number of biomarker genes. While computational methods using nature-inspired algorithms have shown promise in selecting predictive genes, existing techniques are limited by inefficient search and poor generalization across diverse datasets. This study presents a framework termed Evolutionary Optimized Diverse Ensemble Learning (EODE) to improve ensemble learning for cancer classification from gene expression data. The EODE methodology combines an intelligent grey wolf optimization algorithm for selective feature space reduction, guided random injection modeling for ensemble diversity enhancement, and subset model optimization for synergistic classifier combinations. Extensive experiments were conducted across 35 gene expression benchmark datasets encompassing varied cancer types. Results demonstrated that EODE obtained significantly improved screening accuracy over individual and conventionally aggregated models. The integrated optimization of advanced feature selection, directed specialized modeling, and cooperative classifier ensembles helps address key challenges in current nature-inspired approaches. This provides an effective framework for robust and generalized ensemble learning with gene expression biomarkers. Specifically, we have opened EODE source code on Github at https://github.com/wangxb96/EODE.
- Abstract(参考訳): がんの正確なスクリーニングは、がんの検出と正確な治療選択に不可欠である。
しかし、遺伝子発現プロファイルと腫瘍の関係は、しばしば少数のバイオマーカー遺伝子に限られる。
自然に着想を得たアルゴリズムを用いた計算手法は予測遺伝子の選択に有望であるが、既存の手法は非効率な探索と多種多様なデータセットの一般化によって制限されている。
本研究では、遺伝子発現データからがん分類のためのアンサンブル学習を改善するために、進化最適化逆アンサンブル学習(EODE)と呼ばれるフレームワークを提案する。
EODE法は、選択的な特徴空間削減のための知的灰色のオオカミ最適化アルゴリズム、アンサンブルの多様性向上のためのガイド付きランダムインジェクションモデリング、および相乗的分類器の組み合わせのためのサブセットモデル最適化を組み合わせた。
様々ながん種を含む35の遺伝子発現ベンチマークデータセットに対して、広範囲にわたる実験を行った。
その結果、EODEは個々のモデルと従来型のモデルよりもスクリーニング精度が有意に向上した。
高度な特徴選択、指向する特殊モデリング、協調分類器アンサンブルの統合最適化は、現在の自然に触発されたアプローチにおける重要な課題に対処するのに役立つ。
これは、遺伝子発現バイオマーカーを用いた堅牢で一般化されたアンサンブル学習のための効果的なフレームワークを提供する。
具体的には、GithubでEODEソースコードをhttps://github.com/wangxb96/EODEで公開しました。
関連論文リスト
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
本稿では,遺伝子・遺伝子相互作用の探索に先進的なトランスフォーマーモデルを活用する,データ駆動型計算ツールを活用した革新的なアプローチを提案する。
新たな重み付き多様化サンプリングアルゴリズムは、データセットのたった2パスで、各データサンプルの多様性スコアを算出する。
論文 参考訳(メタデータ) (2024-10-21T03:35:23Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNAは、ゲノムボキャブラリ学習の観点からゲノムのトークン化を改良する汎用フレームワークである。
ベクトル量子化されたコードブックを学習可能な語彙として活用することにより、VQDNAはゲノムをパターン認識の埋め込みに適応的にトークン化することができる。
論文 参考訳(メタデータ) (2024-05-13T20:15:03Z) - Feature Selection via Robust Weighted Score for High Dimensional Binary
Class-Imbalanced Gene Expression Data [1.2891210250935148]
非平衡データに対する頑健な重み付けスコア (ROWSU) は, クラス不均衡問題を用いた高次元遺伝子発現二項分類における最も識別性の高い特徴を選択するために提案される。
ROWSU法の性能を6ドルの遺伝子発現データセットで評価した。
論文 参考訳(メタデータ) (2024-01-23T11:22:03Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - StyleGenes: Discrete and Efficient Latent Distributions for GANs [149.0290830305808]
GAN(Generative Adversarial Networks)のための離散潜在分布を提案する。
連続的な先行点から潜在ベクトルを描く代わりに、学習可能な潜在点の有限集合からサンプリングする。
私たちは生物の情報のエンコーディングからインスピレーションを得ます。
論文 参考訳(メタデータ) (2023-04-30T23:28:46Z) - Optimize Deep Learning Models for Prediction of Gene Mutations Using
Unsupervised Clustering [6.494144125433731]
ディープ・ラーニング(Deep Learning)は、全スライディングのデジタル病理画像の解析と解釈において、主流の方法論選択となっている。
本稿では, 教師なしクラスタリングに基づくマルチインスタンス学習を提案するとともに, 3種類の癌からのWSIを用いた遺伝子変異予測のための深層学習モデルの構築に本手法を適用した。
画像パッチの教師なしクラスタリングは, 予測パッチの同定, 予測情報の欠如を排除し, 3種類の癌における遺伝子変異の予測を改善できることを示した。
論文 参考訳(メタデータ) (2022-03-31T11:48:21Z) - Hybrid gene selection approach using XGBoost and multi-objective genetic
algorithm for cancer classification [6.781877756322586]
マイクロアレイデータセットにおける癌分類のための極勾配増強(XGBoost)と多目的最適化遺伝的アルゴリズム(XGBoost-MOGA)を組み合わせた2段階遺伝子選択手法を提案する。
XGBoost-MOGAは、精度、Fスコア、精度、リコールなどの様々な評価基準の観点から、従来の最先端アルゴリズムよりもはるかに優れた結果が得られる。
論文 参考訳(メタデータ) (2021-05-30T03:43:22Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Analysis of ensemble feature selection for correlated high-dimensional
RNA-Seq cancer data [0.24366811507669126]
本研究は、関連する変数の発見のための2つのアプローチを比較する。
最も有益な特徴は、4つの特徴選択アルゴリズムを用いて識別される。
残念なことに、特徴選択アルゴリズムのアンサンブルから得られた特徴集合に基づいて構築されたモデルは、個々のアルゴリズムから得られた特徴集合に基づいて開発されたモデルよりは良くなかった。
論文 参考訳(メタデータ) (2020-04-28T20:38:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。