Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner
- URL: http://arxiv.org/abs/2404.04547v1
- Date: Sat, 6 Apr 2024 08:07:48 GMT
- Title: Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner
- Authors: Xubin Wang, Yunhe Wang, Zhiqing Ma, Ka-Chun Wong, Xiangtao Li,
- Abstract summary: This study presents a framework termed Evolutionary Optimized Diverse Ensemble Learning (EODE) to improve ensemble learning for cancer classification from gene expression data.
Experiments were conducted across 35 gene expression benchmark datasets encompassing varied cancer types.
- Score: 20.07173196364489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate screening of cancer types is crucial for effective cancer detection and precise treatment selection. However, the association between gene expression profiles and tumors is often limited to a small number of biomarker genes. While computational methods using nature-inspired algorithms have shown promise in selecting predictive genes, existing techniques are limited by inefficient search and poor generalization across diverse datasets. This study presents a framework termed Evolutionary Optimized Diverse Ensemble Learning (EODE) to improve ensemble learning for cancer classification from gene expression data. The EODE methodology combines an intelligent grey wolf optimization algorithm for selective feature space reduction, guided random injection modeling for ensemble diversity enhancement, and subset model optimization for synergistic classifier combinations. Extensive experiments were conducted across 35 gene expression benchmark datasets encompassing varied cancer types. Results demonstrated that EODE obtained significantly improved screening accuracy over individual and conventionally aggregated models. The integrated optimization of advanced feature selection, directed specialized modeling, and cooperative classifier ensembles helps address key challenges in current nature-inspired approaches. This provides an effective framework for robust and generalized ensemble learning with gene expression biomarkers. Specifically, we have opened EODE source code on Github at https://github.com/wangxb96/EODE.
Related papers
- Weighted Diversified Sampling for Efficient Data-Driven Single-Cell Gene-Gene Interaction Discovery [56.622854875204645]
We present an innovative approach utilizing data-driven computational tools, leveraging an advanced Transformer model, to unearth gene-gene interactions.
A novel weighted diversified sampling algorithm computes the diversity score of each data sample in just two passes of the dataset.
arXiv Detail & Related papers (2024-10-21T03:35:23Z) - Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
We develop a Biological-knowledge enhanced PathGenomic multi-label Transformer to improve genetic mutation prediction performances.
BPGT first establishes a novel gene encoder that constructs gene priors by two carefully designed modules.
BPGT then designs a label decoder that finally performs genetic mutation prediction by two tailored modules.
arXiv Detail & Related papers (2024-06-05T06:42:27Z) - VQDNA: Unleashing the Power of Vector Quantization for Multi-Species Genomic Sequence Modeling [60.91599380893732]
VQDNA is a general-purpose framework that renovates genome tokenization from the perspective of genome vocabulary learning.
By leveraging vector-quantized codebooks as learnable vocabulary, VQDNA can adaptively tokenize genomes into pattern-aware embeddings.
arXiv Detail & Related papers (2024-05-13T20:15:03Z) - Feature Selection via Robust Weighted Score for High Dimensional Binary
Class-Imbalanced Gene Expression Data [1.2891210250935148]
A robust weighted score for unbalanced data (ROWSU) is proposed for selecting the most discriminative feature for high dimensional gene expression binary classification with class-imbalance problem.
The performance of the proposed ROWSU method is evaluated on $6$ gene expression datasets.
arXiv Detail & Related papers (2024-01-23T11:22:03Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
Genetic Algorithms (GAs) are known for their efficiency in solving optimization problems.
This paper proposes a new metaheuristic algorithm called the Genetic Engineering Algorithm (GEA) that draws inspiration from genetic engineering concepts.
arXiv Detail & Related papers (2023-09-28T13:05:30Z) - StyleGenes: Discrete and Efficient Latent Distributions for GANs [149.0290830305808]
We propose a discrete latent distribution for Generative Adversarial Networks (GANs)
Instead of drawing latent vectors from a continuous prior, we sample from a finite set of learnable latents.
We take inspiration from the encoding of information in biological organisms.
arXiv Detail & Related papers (2023-04-30T23:28:46Z) - Optimize Deep Learning Models for Prediction of Gene Mutations Using
Unsupervised Clustering [6.494144125433731]
Deep learning has become the mainstream methodological choice for analyzing and interpreting whole-slide digital pathology images.
In this paper, we proposed an unsupervised clustering-based multiple-instance learning, and apply our method to develop deep-learning models for prediction of gene mutations using WSIs from three cancer types.
We showed that unsupervised clustering of image patches could help identify predictive patches, exclude patches lack of predictive information, and therefore improve prediction on gene mutations in all three different cancer types.
arXiv Detail & Related papers (2022-03-31T11:48:21Z) - Hybrid gene selection approach using XGBoost and multi-objective genetic
algorithm for cancer classification [6.781877756322586]
We propose a two-stage gene selection approach by combining extreme gradient boosting (XGBoost) and a multi-objective optimization genetic algorithm (XGBoost-MOGA) for cancer classification in microarray datasets.
XGBoost-MOGA yields significantly better results than previous state-of-the-art algorithms in terms of various evaluation criteria, such as accuracy, F-score, precision, and recall.
arXiv Detail & Related papers (2021-05-30T03:43:22Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Analysis of ensemble feature selection for correlated high-dimensional
RNA-Seq cancer data [0.24366811507669126]
This study compares two approaches for the discovery of relevant variables.
The most informative features are identified using a four feature selection algorithms.
Unfortunately, models built on feature sets obtained from the ensemble of feature selection algorithms were no better than for models developed on feature sets obtained from individual algorithms.
arXiv Detail & Related papers (2020-04-28T20:38:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.