Feature Selection via Robust Weighted Score for High Dimensional Binary
Class-Imbalanced Gene Expression Data
- URL: http://arxiv.org/abs/2401.12667v1
- Date: Tue, 23 Jan 2024 11:22:03 GMT
- Title: Feature Selection via Robust Weighted Score for High Dimensional Binary
Class-Imbalanced Gene Expression Data
- Authors: Zardad Khan, Amjad Ali, Saeed Aldahmani
- Abstract summary: A robust weighted score for unbalanced data (ROWSU) is proposed for selecting the most discriminative feature for high dimensional gene expression binary classification with class-imbalance problem.
The performance of the proposed ROWSU method is evaluated on $6$ gene expression datasets.
- Score: 1.2891210250935148
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a robust weighted score for unbalanced data (ROWSU) is
proposed for selecting the most discriminative feature for high dimensional
gene expression binary classification with class-imbalance problem. The method
addresses one of the most challenging problems of highly skewed class
distributions in gene expression datasets that adversely affect the performance
of classification algorithms. First, the training dataset is balanced by
synthetically generating data points from minority class observations. Second,
a minimum subset of genes is selected using a greedy search approach. Third, a
novel weighted robust score, where the weights are computed by support vectors,
is introduced to obtain a refined set of genes. The highest-scoring genes based
on this approach are combined with the minimum subset of genes selected by the
greedy search approach to form the final set of genes. The novel method ensures
the selection of the most discriminative genes, even in the presence of skewed
class distribution, thus improving the performance of the classifiers. The
performance of the proposed ROWSU method is evaluated on $6$ gene expression
datasets. Classification accuracy and sensitivity are used as performance
metrics to compare the proposed ROWSU algorithm with several other
state-of-the-art methods. Boxplots and stability plots are also constructed for
a better understanding of the results. The results show that the proposed
method outperforms the existing feature selection procedures based on
classification performance from k nearest neighbours (kNN) and random forest
(RF) classifiers.
Related papers
- Exhaustive Exploitation of Nature-inspired Computation for Cancer Screening in an Ensemble Manner [20.07173196364489]
This study presents a framework termed Evolutionary Optimized Diverse Ensemble Learning (EODE) to improve ensemble learning for cancer classification from gene expression data.
Experiments were conducted across 35 gene expression benchmark datasets encompassing varied cancer types.
arXiv Detail & Related papers (2024-04-06T08:07:48Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
We propose a principled underlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN) loss to debias the classification head.
arXiv Detail & Related papers (2022-10-12T23:39:28Z) - Multivariate feature ranking of gene expression data [62.997667081978825]
We propose two new multivariate feature ranking methods based on pairwise correlation and pairwise consistency.
We statistically prove that the proposed methods outperform the state of the art feature ranking methods Clustering Variation, Chi Squared, Correlation, Information Gain, ReliefF and Significance.
arXiv Detail & Related papers (2021-11-03T17:19:53Z) - Riemannian classification of EEG signals with missing values [67.90148548467762]
This paper proposes two strategies to handle missing data for the classification of electroencephalograms.
The first approach estimates the covariance from imputed data with the $k$-nearest neighbors algorithm; the second relies on the observed data by leveraging the observed-data likelihood within an expectation-maximization algorithm.
As results show, the proposed strategies perform better than the classification based on observed data and allow to keep a high accuracy even when the missing data ratio increases.
arXiv Detail & Related papers (2021-10-19T14:24:50Z) - Hybrid Ensemble optimized algorithm based on Genetic Programming for
imbalanced data classification [0.0]
We propose a hybrid ensemble algorithm based on Genetic Programming (GP) for two classes of imbalanced data classification.
Experimental results show the performance of the proposed method on the specified data sets in the size of the training set shows 40% and 50% better accuracy than other dimensions of the minority class prediction.
arXiv Detail & Related papers (2021-06-02T14:14:38Z) - Hybrid gene selection approach using XGBoost and multi-objective genetic
algorithm for cancer classification [6.781877756322586]
We propose a two-stage gene selection approach by combining extreme gradient boosting (XGBoost) and a multi-objective optimization genetic algorithm (XGBoost-MOGA) for cancer classification in microarray datasets.
XGBoost-MOGA yields significantly better results than previous state-of-the-art algorithms in terms of various evaluation criteria, such as accuracy, F-score, precision, and recall.
arXiv Detail & Related papers (2021-05-30T03:43:22Z) - Minimax Active Learning [61.729667575374606]
Active learning aims to develop label-efficient algorithms by querying the most representative samples to be labeled by a human annotator.
Current active learning techniques either rely on model uncertainty to select the most uncertain samples or use clustering or reconstruction to choose the most diverse set of unlabeled examples.
We develop a semi-supervised minimax entropy-based active learning algorithm that leverages both uncertainty and diversity in an adversarial manner.
arXiv Detail & Related papers (2020-12-18T19:03:40Z) - A Novel Community Detection Based Genetic Algorithm for Feature
Selection [3.8848561367220276]
Authors propose a genetic algorithm based on community detection, which functions in three steps.
Nine benchmark classification problems were analyzed in terms of the performance of the presented approach.
arXiv Detail & Related papers (2020-08-08T15:39:30Z) - A New Gene Selection Algorithm using Fuzzy-Rough Set Theory for Tumor
Classification [0.0]
We present a new technique for gene selection using a discernibility matrix of fuzzy-rough sets.
The proposed technique takes into account the similarity of those instances that have the same and different class labels to improve the gene selection results.
Experimental results demonstrate that this technique provides better efficiency compared to the state-of-the-art approaches.
arXiv Detail & Related papers (2020-03-26T13:43:25Z) - Clustering Binary Data by Application of Combinatorial Optimization
Heuristics [52.77024349608834]
We study clustering methods for binary data, first defining aggregation criteria that measure the compactness of clusters.
Five new and original methods are introduced, using neighborhoods and population behavior optimization metaheuristics.
From a set of 16 data tables generated by a quasi-Monte Carlo experiment, a comparison is performed for one of the aggregations using L1 dissimilarity, with hierarchical clustering, and a version of k-means: partitioning around medoids or PAM.
arXiv Detail & Related papers (2020-01-06T23:33:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.