論文の概要: D$^3$: Scaling Up Deepfake Detection by Learning from Discrepancy
- arxiv url: http://arxiv.org/abs/2404.04584v1
- Date: Sat, 6 Apr 2024 10:45:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:29:27.097176
- Title: D$^3$: Scaling Up Deepfake Detection by Learning from Discrepancy
- Title(参考訳): D$^3$:離散性から学習したディープフェイク検出のスケールアップ
- Authors: Yongqi Yang, Zhihao Qian, Ye Zhu, Yu Wu,
- Abstract要約: 我々は、より一般化と堅牢性のある普遍的なディープフェイク検出システムに向けた一歩を踏み出した。
本稿では,複数のジェネレータから汎用的なアーティファクトを学習することを目的として,Drepancy Deepfake Detectorフレームワークを提案する。
本フレームワークは,ID性能を維持しながら,現在のSOTA法と比較してOOD検査の精度を5.3%向上させる。
- 参考スコア(独自算出の注目度): 11.239248133240126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The boom of Generative AI brings opportunities entangled with risks and concerns. In this work, we seek a step toward a universal deepfake detection system with better generalization and robustness, to accommodate the responsible deployment of diverse image generative models. We do so by first scaling up the existing detection task setup from the one-generator to multiple-generators in training, during which we disclose two challenges presented in prior methodological designs. Specifically, we reveal that the current methods tailored for training on one specific generator either struggle to learn comprehensive artifacts from multiple generators or tend to sacrifice their ability to identify fake images from seen generators (i.e., In-Domain performance) to exchange the generalization for unseen generators (i.e., Out-Of-Domain performance). To tackle the above challenges, we propose our Discrepancy Deepfake Detector (D$^3$) framework, whose core idea is to learn the universal artifacts from multiple generators by introducing a parallel network branch that takes a distorted image as extra discrepancy signal to supplement its original counterpart. Extensive scaled-up experiments on the merged UFD and GenImage datasets with six detection models demonstrate the effectiveness of our framework, achieving a 5.3% accuracy improvement in the OOD testing compared to the current SOTA methods while maintaining the ID performance.
- Abstract(参考訳): ジェネレーティブAIのブームは、リスクと懸念に絡み合った機会をもたらす。
本研究では,多種多様な画像生成モデルの責任ある展開に対応するため,より一般化と堅牢性を有する汎用的なディープフェイク検出システムを提案する。
まず,既存の検出タスクのセットアップを1ジェネレータから複数ジェネレータにスケールアップし,事前の方法論設計で提示された2つの課題を明らかにする。
具体的には、ある特定のジェネレータのトレーニングに適した現在の手法は、複数のジェネレータから包括的アーティファクトを学習するのに苦労しているか、あるいは見えないジェネレータ(例えば、イン・ドメインのパフォーマンス)から偽のイメージを識別し、未知のジェネレータ(つまり、アウト・オフ・ドメインのパフォーマンス)への一般化を交換する能力を犠牲にする傾向があることを明らかにした。
上記の課題に対処するため、D$^3$(Disdisrepancy Deepfake Detector)フレームワークを提案し、その中核となる考え方は、歪んだ画像を余分な離散信号として取り込む並列ネットワークブランチを導入して、複数のジェネレータから普遍的なアーティファクトを学習することである。
統合されたUFDデータセットとGenImageデータセットの6つの検出モデルによる大規模なスケールアップ実験により,本フレームワークの有効性が示され,ID性能を維持しつつ,現在のSOTA法と比較してOOD試験の精度が5.3%向上した。
関連論文リスト
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
本稿では,高分解能なリモートセンシング画像変化検出タスクを実現するために,二重注意生成対向ネットワークを提案する。
DAGANフレームワークは、85.01%がIoU、91.48%がF1スコアであり、LEVIRデータセットの先進的な手法よりもパフォーマンスが良い。
論文 参考訳(メタデータ) (2023-10-03T08:26:27Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image [28.38575401686718]
我々は、100万組のAI生成フェイクイメージと実際の画像の収集を含むGenImageデータセットを紹介した。
この利点は、GenImageで訓練された検出器が徹底的な評価を行い、多様な画像に適用可能であることを示すことである。
本研究では,本データセットの包括的解析を行い,実世界のシナリオに類似した検出手法を評価するための2つの課題を提案する。
論文 参考訳(メタデータ) (2023-06-14T15:21:09Z) - SeeABLE: Soft Discrepancies and Bounded Contrastive Learning for
Exposing Deepfakes [7.553507857251396]
本研究では,検出問題を(一級)アウト・オブ・ディストリビューション検出タスクとして形式化する,SeeABLEと呼ばれる新しいディープフェイク検出器を提案する。
SeeABLEは、新しい回帰ベースの有界コントラスト損失を使用して、乱れた顔を事前定義されたプロトタイプにプッシュする。
我々のモデルは競合する最先端の検出器よりも高い性能を示しながら、高度に一般化能力を示す。
論文 参考訳(メタデータ) (2022-11-21T09:38:30Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。