論文の概要: D$^3$: Scaling Up Deepfake Detection by Learning from Discrepancy
- arxiv url: http://arxiv.org/abs/2404.04584v2
- Date: Sun, 23 Mar 2025 15:36:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:30:43.858614
- Title: D$^3$: Scaling Up Deepfake Detection by Learning from Discrepancy
- Title(参考訳): D$^3$:離散性から学習したディープフェイク検出のスケールアップ
- Authors: Yongqi Yang, Zhihao Qian, Ye Zhu, Olga Russakovsky, Yu Wu,
- Abstract要約: 既存の文献は、目に見えない発電機上でのディープフェイク検出の一般化能力を強調している。
この研究は、より一般化と堅牢性のある普遍的なディープフェイク検出システムに向けた一歩である。
- 参考スコア(独自算出の注目度): 29.919663502808575
- License:
- Abstract: The boom of Generative AI brings opportunities entangled with risks and concerns. Existing literature emphasizes the generalization capability of deepfake detection on unseen generators, significantly promoting the detector's ability to identify more universal artifacts. This work seeks a step toward a universal deepfake detection system with better generalization and robustness. We do so by first scaling up the existing detection task setup from the one-generator to multiple-generators in training, during which we disclose two challenges presented in prior methodological designs and demonstrate the divergence of detectors' performance. Specifically, we reveal that the current methods tailored for training on one specific generator either struggle to learn comprehensive artifacts from multiple generators or sacrifice their fitting ability for seen generators (i.e., In-Domain (ID) performance) to exchange the generalization for unseen generators (i.e., Out-Of-Domain (OOD) performance). To tackle the above challenges, we propose our Discrepancy Deepfake Detector (D$^3$) framework, whose core idea is to deconstruct the universal artifacts from multiple generators by introducing a parallel network branch that takes a distorted image feature as an extra discrepancy signal and supplement its original counterpart. Extensive scaled-up experiments demonstrate the effectiveness of D$^3$, achieving 5.3% accuracy improvement in the OOD testing compared to the current SOTA methods while maintaining the ID performance. The source code will be updated in our GitHub repository: https://github.com/BigAandSmallq/D3
- Abstract(参考訳): ジェネレーティブAIのブームは、リスクと懸念に絡み合った機会をもたらす。
現存する文献は、目に見えない発電機のディープフェイク検出の一般化能力を強調し、検出器がより普遍的なアーティファクトを識別する能力を著しく促進している。
この研究は、より一般化と堅牢性のある普遍的なディープフェイク検出システムに向けた一歩である。
まず,既存の検出タスクのセットアップを1ジェネレータから複数ジェネレータにスケールアップし,従来の方法論設計で提示された2つの課題を明らかにし,検出器の性能のばらつきを実証する。
具体的には、複数の発電機から包括的アーティファクトを学習するのに苦労しているか、あるいは見えないジェネレータ(例えば、In-Domain(ID)パフォーマンス)の適合性を犠牲にして、未知のジェネレータ(例えば、Out-Of-Domain(OOD)パフォーマンス)の一般化を交換する現在の方法を明らかにする。
このような課題に対処するため,我々はD$^3$のDrecrepancy Deepfake Detector(D$^3$)フレームワークを提案し,その中核となる考え方は,歪み画像の特徴を余分な離散信号として取り込んだ並列ネットワークブランチを導入して,複数のジェネレータから普遍的なアーティファクトを分解することである。
大規模なスケールアップ実験では,ID性能を維持しながら,OOD試験の精度を5.3%向上するD$^3$の有効性が示された。
ソースコードはGitHubリポジトリで更新されます。
関連論文リスト
- HFMF: Hierarchical Fusion Meets Multi-Stream Models for Deepfake Detection [4.908389661988192]
HFMFは総合的な2段階のディープフェイク検出フレームワークである。
視覚変換器と畳み込みネットを階層的特徴融合機構を通じて統合する。
私たちのアーキテクチャは、多様なデータセットベンチマークで優れたパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2025-01-10T00:20:29Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - GenFace: A Large-Scale Fine-Grained Face Forgery Benchmark and Cross Appearance-Edge Learning [50.7702397913573]
フォトリアリスティック・ジェネレータの急速な進歩は、真の画像と操作された画像の相違がますます不明瞭になっている臨界点に達している。
公開されている顔の偽造データセットはいくつかあるが、偽造顔は主にGANベースの合成技術を用いて生成される。
我々は,大規模で多様できめ細かな高忠実度データセットであるGenFaceを提案し,ディープフェイク検出の進展を促進する。
論文 参考訳(メタデータ) (2024-02-03T03:13:50Z) - Generalized Deepfakes Detection with Reconstructed-Blended Images and
Multi-scale Feature Reconstruction Network [14.749857283918157]
未確認データセットに対する堅牢な適用性を有するブレンドベース検出手法を提案する。
実験により、この手法により、未知のデータ上でのクロスマニピュレーション検出とクロスデータセット検出の両方のパフォーマンスが向上することが示された。
論文 参考訳(メタデータ) (2023-12-13T09:49:15Z) - A Dual Attentive Generative Adversarial Network for Remote Sensing Image
Change Detection [6.906936669510404]
本稿では,高分解能なリモートセンシング画像変化検出タスクを実現するために,二重注意生成対向ネットワークを提案する。
DAGANフレームワークは、85.01%がIoU、91.48%がF1スコアであり、LEVIRデータセットの先進的な手法よりもパフォーマンスが良い。
論文 参考訳(メタデータ) (2023-10-03T08:26:27Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - GenImage: A Million-Scale Benchmark for Detecting AI-Generated Image [28.38575401686718]
我々は、100万組のAI生成フェイクイメージと実際の画像の収集を含むGenImageデータセットを紹介した。
この利点は、GenImageで訓練された検出器が徹底的な評価を行い、多様な画像に適用可能であることを示すことである。
本研究では,本データセットの包括的解析を行い,実世界のシナリオに類似した検出手法を評価するための2つの課題を提案する。
論文 参考訳(メタデータ) (2023-06-14T15:21:09Z) - Target-aware Dual Adversarial Learning and a Multi-scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection [65.30079184700755]
本研究は、物体検出のために異なるように見える赤外線と可視画像の融合の問題に対処する。
従来のアプローチでは、2つのモダリティの根底にある共通点を発見し、反復最適化またはディープネットワークによって共通空間に融合する。
本稿では、融合と検出の連立問題に対する二段階最適化の定式化を提案し、その後、核融合と一般的に使用される検出ネットワークのためのターゲット認識デュアル逆学習(TarDAL)ネットワークに展開する。
論文 参考訳(メタデータ) (2022-03-30T11:44:56Z) - Beyond the Spectrum: Detecting Deepfakes via Re-Synthesis [69.09526348527203]
ディープフェイク(Deepfakes)として知られる非常に現実的なメディアは、現実の目から人間の目まで区別できない。
本研究では,テスト画像を再合成し,検出のための視覚的手がかりを抽出する,新しい偽検出手法を提案する。
種々の検出シナリオにおいて,提案手法の摂動に対する有効性の向上,GANの一般化,堅牢性を示す。
論文 参考訳(メタデータ) (2021-05-29T21:22:24Z) - M2TR: Multi-modal Multi-scale Transformers for Deepfake Detection [74.19291916812921]
Deepfake技術によって生成された鍛造画像は、デジタル情報の信頼性に深刻な脅威をもたらします。
本稿では,Deepfake検出のための微妙な操作アーチファクトを異なるスケールで捉えることを目的とする。
最先端の顔スワッピングと顔の再現方法によって生成された4000のDeepFakeビデオで構成される高品質のDeepFakeデータセットSR-DFを紹介します。
論文 参考訳(メタデータ) (2021-04-20T05:43:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。