PIE: Physics-inspired Low-light Enhancement
- URL: http://arxiv.org/abs/2404.04586v1
- Date: Sat, 6 Apr 2024 10:50:02 GMT
- Title: PIE: Physics-inspired Low-light Enhancement
- Authors: Dong Liang, Zhengyan Xu, Ling Li, Mingqiang Wei, Songcan Chen,
- Abstract summary: We propose a physics-inspired contrastive learning paradigm for low-light enhancement, called PIE.
Pie can effectively learn from unpaired positive/negative samples and smoothly realize non-semantic regional enhancement, which is clearly different from existing LLE efforts.
- Score: 38.2038884206756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a physics-inspired contrastive learning paradigm for low-light enhancement, called PIE. PIE primarily addresses three issues: (i) To resolve the problem of existing learning-based methods often training a LLE model with strict pixel-correspondence image pairs, we eliminate the need for pixel-correspondence paired training data and instead train with unpaired images. (ii) To address the disregard for negative samples and the inadequacy of their generation in existing methods, we incorporate physics-inspired contrastive learning for LLE and design the Bag of Curves (BoC) method to generate more reasonable negative samples that closely adhere to the underlying physical imaging principle. (iii) To overcome the reliance on semantic ground truths in existing methods, we propose an unsupervised regional segmentation module, ensuring regional brightness consistency while eliminating the dependency on semantic ground truths. Overall, the proposed PIE can effectively learn from unpaired positive/negative samples and smoothly realize non-semantic regional enhancement, which is clearly different from existing LLE efforts. Besides the novel architecture of PIE, we explore the gain of PIE on downstream tasks such as semantic segmentation and face detection. Training on readily available open data and extensive experiments demonstrate that our method surpasses the state-of-the-art LLE models over six independent cross-scenes datasets. PIE runs fast with reasonable GFLOPs in test time, making it easy to use on mobile devices.
Related papers
- ACTRESS: Active Retraining for Semi-supervised Visual Grounding [52.08834188447851]
A previous study, RefTeacher, makes the first attempt to tackle this task by adopting the teacher-student framework to provide pseudo confidence supervision and attention-based supervision.
This approach is incompatible with current state-of-the-art visual grounding models, which follow the Transformer-based pipeline.
Our paper proposes the ACTive REtraining approach for Semi-Supervised Visual Grounding, abbreviated as ACTRESS.
arXiv Detail & Related papers (2024-07-03T16:33:31Z) - Enhancing Surface Neural Implicits with Curvature-Guided Sampling and Uncertainty-Augmented Representations [37.42624848693373]
We introduce a method that directly digests depth images for the task of high-fidelity 3D reconstruction.
A simple sampling strategy is proposed to generate highly effective training data.
Despite its simplicity, our method outperforms a range of both classical and learning-based baselines.
arXiv Detail & Related papers (2023-06-03T12:23:17Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - Cross-Stream Contrastive Learning for Self-Supervised Skeleton-Based
Action Recognition [22.067143671631303]
Self-supervised skeleton-based action recognition enjoys a rapid growth along with the development of contrastive learning.
We propose a Cross-Stream Contrastive Learning framework for skeleton-based action Representation learning (CSCLR)
Specifically, the proposed CSCLR not only utilizes intra-stream contrast pairs, but introduces inter-stream contrast pairs as hard samples to formulate a better representation learning.
arXiv Detail & Related papers (2023-05-03T10:31:35Z) - Improving GAN Training via Feature Space Shrinkage [69.98365478398593]
We propose AdaptiveMix, which shrinks regions of training data in the image representation space of the discriminator.
Considering it is intractable to directly bound feature space, we propose to construct hard samples and narrow down the feature distance between hard and easy samples.
The evaluation results demonstrate that our AdaptiveMix can facilitate the training of GANs and effectively improve the image quality of generated samples.
arXiv Detail & Related papers (2023-03-02T20:22:24Z) - Towards Effective Image Manipulation Detection with Proposal Contrastive
Learning [61.5469708038966]
We propose Proposal Contrastive Learning (PCL) for effective image manipulation detection.
Our PCL consists of a two-stream architecture by extracting two types of global features from RGB and noise views respectively.
Our PCL can be easily adapted to unlabeled data in practice, which can reduce manual labeling costs and promote more generalizable features.
arXiv Detail & Related papers (2022-10-16T13:30:13Z) - Dense Depth Distillation with Out-of-Distribution Simulated Images [30.79756881887895]
We study data-free knowledge distillation (KD) for monocular depth estimation (MDE)
KD learns a lightweight model for real-world depth perception tasks by compressing it from a trained teacher model while lacking training data in the target domain.
We show that our method outperforms the baseline KD by a good margin and even slightly better performance with as few as 1/6 of training images.
arXiv Detail & Related papers (2022-08-26T07:10:01Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Regularity Learning via Explicit Distribution Modeling for Skeletal
Video Anomaly Detection [43.004613173363566]
A novel Motion Embedder (ME) is proposed to provide a pose motion representation from the probability perspective.
A novel task-specific Spatial-Temporal Transformer (STT) is deployed for self-supervised pose sequence reconstruction.
MoPRL achieves the state-of-the-art performance by an average improvement of 4.7% AUC on several challenging datasets.
arXiv Detail & Related papers (2021-12-07T11:52:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.