論文の概要: Focused Active Learning for Histopathological Image Classification
- arxiv url: http://arxiv.org/abs/2404.04663v1
- Date: Sat, 6 Apr 2024 15:31:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:09:57.361221
- Title: Focused Active Learning for Histopathological Image Classification
- Title(参考訳): 病理画像分類のための集中型能動学習
- Authors: Arne Schmidt, Pablo Morales-Álvarez, Lee A. D. Cooper, Lee A. Newberg, Andinet Enquobahrie, Aggelos K. Katsaggelos, Rafael Molina,
- Abstract要約: アクティブラーニングは、機械学習アルゴリズムのためのラベル付きデータの効率的な取得という、デジタル病理の大きな問題を解決する可能性がある。
本研究では,ベイズニューラルネットワークとアウト・オブ・ディストリビューション検出を組み合わせたFocALを提案する。
我々は,前立腺癌の分類のためのMNISTと実世界のパンダデータセットの手法を検証するために,広範囲な実験を行った。
- 参考スコア(独自算出の注目度): 10.489874002201644
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Learning (AL) has the potential to solve a major problem of digital pathology: the efficient acquisition of labeled data for machine learning algorithms. However, existing AL methods often struggle in realistic settings with artifacts, ambiguities, and class imbalances, as commonly seen in the medical field. The lack of precise uncertainty estimations leads to the acquisition of images with a low informative value. To address these challenges, we propose Focused Active Learning (FocAL), which combines a Bayesian Neural Network with Out-of-Distribution detection to estimate different uncertainties for the acquisition function. Specifically, the weighted epistemic uncertainty accounts for the class imbalance, aleatoric uncertainty for ambiguous images, and an OoD score for artifacts. We perform extensive experiments to validate our method on MNIST and the real-world Panda dataset for the classification of prostate cancer. The results confirm that other AL methods are 'distracted' by ambiguities and artifacts which harm the performance. FocAL effectively focuses on the most informative images, avoiding ambiguities and artifacts during acquisition. For both experiments, FocAL outperforms existing AL approaches, reaching a Cohen's kappa of 0.764 with only 0.69% of the labeled Panda data.
- Abstract(参考訳): アクティブラーニング(AL)は、機械学習アルゴリズムのためのラベル付きデータの効率的な取得という、デジタル病理の大きな問題を解決する可能性がある。
しかしながら、既存のALメソッドは、医療分野でよく見られるように、アーティファクト、あいまいさ、クラス不均衡と現実的な設定で苦労することが多い。
正確な不確実性推定の欠如は、情報的価値の低い画像の取得につながる。
これらの課題に対処するために,ベイズニューラルネットワークとアウト・オブ・ディストリビューション検出を組み合わせたFocALを提案する。
特に、重み付きてんかんの不確実性は、クラス不均衡、曖昧な画像に対するアレター的不確実性、人工物に対するOoDスコアを考慮に入れている。
我々は,前立腺癌の分類のためのMNISTと実世界のパンダデータセットの手法を検証するために,広範囲な実験を行った。
その結果、他のALメソッドは、パフォーマンスを損なう曖昧さやアーティファクトによって「引き離される」ことが確認された。
FocALは、取得中の曖昧さやアーティファクトを避けるため、最も情報性の高い画像に効果的に焦点を合わせている。
どちらの実験でも、FocALは既存のALアプローチよりも優れており、コーエンのカッパは0.764で、ラベル付きパンダデータのわずか0.69%である。
関連論文リスト
- Predictive Accuracy-Based Active Learning for Medical Image Segmentation [5.25147264940975]
医用画像セグメンテーションのための効果的な予測精度に基づく能動学習法を提案する。
PAALは、精度予測器(AP)と軽量ポーリング戦略(WPS)から構成される。
複数のデータセットに対する実験結果は、PAALの優位性を示している。
論文 参考訳(メタデータ) (2024-05-01T11:12:08Z) - MyriadAL: Active Few Shot Learning for Histopathology [10.652626309100889]
我々は、Myriad Active Learning (MAL)という、アクティブな数個のショットラーニングフレームワークを導入する。
MALには、コントラスト学習エンコーダ、擬似ラベル生成、ループ内の新しいクエリサンプル選択が含まれている。
2つの公的な病理組織学データセットの実験により、MALは以前の研究に比べてテスト精度、マクロF1スコア、ラベル効率が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-24T20:08:15Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Active learning for medical image segmentation with stochastic batches [13.171801108109198]
手動ラベリングを減らすために、アクティブラーニング(AL)は、ラベル付きトレーニングセットに注釈を付け、追加するために、未ラベルセットから最も情報性の高いサンプルをターゲットにする。
本研究の目的は、ランダムサンプリングによって提供される多様性と速度を利用して、医用画像のセグメント化のための不確実性に基づくAL手法の選択を改善することである。
論文 参考訳(メタデータ) (2023-01-18T17:25:55Z) - Seamless Iterative Semi-Supervised Correction of Imperfect Labels in
Microscopy Images [57.42492501915773]
生体内試験は、医療機器の毒性に対する動物実験の代替手段である。
人間の疲労は、深層学習を魅力的なものにするために、エラー作成に重要な役割を果たします。
我々は、不完全ラベルのシームレス反復半監督補正(SISSI)を提案する。
本手法は,物体検出に適応的な早期学習補正技術を提供する。
論文 参考訳(メタデータ) (2022-08-05T18:52:20Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
CAD(Computer-Aided Diagnosis)では、従来の分類モデルでは、主に1つのネットワークを使って特徴を抽出する。
本稿では良性病変と悪性病変のバイナリ分類のための画像レベルラベルに基づく深層アンサンブルモデルを提案する。
結果: アンサンブルネットワークモデルにおいて、画像レベルのバイナリ分類は9,8.90%の精度を達成する。
論文 参考訳(メタデータ) (2022-04-18T13:31:53Z) - Weakly-supervised Generative Adversarial Networks for medical image
classification [1.479639149658596]
Weakly-Supervised Generative Adversarial Networks (WSGAN) と呼ばれる新しい医用画像分類アルゴリズムを提案する。
WSGANは、ラベルのない少数の実画像のみを使用して、偽画像やマスク画像を生成し、トレーニングセットのサンプルサイズを拡大する。
ラベル付きデータやラベルなしデータの少ない使用により,WSGANは比較的高い学習性能が得られることを示す。
論文 参考訳(メタデータ) (2021-11-29T15:38:48Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Data-Uncertainty Guided Multi-Phase Learning for Semi-Supervised Object
Detection [66.10057490293981]
半監視対象検出のためのデータ不確実性誘導多相学習法を提案する。
本手法は,ベースライン手法と比較して異常に動作し,大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2021-03-29T09:27:23Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。