論文の概要: Navigating the Landscape of Hint Generation Research: From the Past to the Future
- arxiv url: http://arxiv.org/abs/2404.04728v1
- Date: Sat, 6 Apr 2024 20:42:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:50:28.754073
- Title: Navigating the Landscape of Hint Generation Research: From the Past to the Future
- Title(参考訳): ヒント世代研究の景観を旅する:過去から未来へ
- Authors: Anubhav Jangra, Jamshid Mozafari, Adam Jatowt, Smaranda Muresan,
- Abstract要約: 本稿では,学習研究と認知科学のギャップを埋めることを目的として,ヒント生成に関する先行研究のレビューを行う。
本稿では,ヒント生成タスクの形式的定義を提案し,効果的なヒント生成システム構築のロードマップについて論じる。
- 参考スコア(独自算出の注目度): 34.47999708205151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Digital education has gained popularity in the last decade, especially after the COVID-19 pandemic. With the improving capabilities of large language models to reason and communicate with users, envisioning intelligent tutoring systems (ITSs) that can facilitate self-learning is not very far-fetched. One integral component to fulfill this vision is the ability to give accurate and effective feedback via hints to scaffold the learning process. In this survey article, we present a comprehensive review of prior research on hint generation, aiming to bridge the gap between research in education and cognitive science, and research in AI and Natural Language Processing. Informed by our findings, we propose a formal definition of the hint generation task, and discuss the roadmap of building an effective hint generation system aligned with the formal definition, including open challenges, future directions and ethical considerations.
- Abstract(参考訳): デジタル教育は、新型コロナウイルス(COVID-19)のパンデミック以降、過去10年間で人気を博している。
ユーザとの推論とコミュニケーションのための大規模言語モデルの能力向上により、自己学習を容易にするインテリジェントな学習システム(ITS)を構想するのはそれほど遠くない。
このビジョンを達成するための重要な要素の1つは、学習プロセスの足場となるヒントを通じて、正確で効果的なフィードバックを提供する能力である。
本稿では,学習と認知科学のギャップを埋めることを目的としたヒント生成の先行研究と,AIと自然言語処理の研究を包括的に検討する。
そこで,本研究では,ヒント生成タスクの形式的定義を提案し,オープン課題,今後の方向性,倫理的考察を含む形式的定義に沿った効果的なヒント生成システム構築のロードマップについて議論する。
関連論文リスト
- Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Integrating A.I. in Higher Education: Protocol for a Pilot Study with 'SAMCares: An Adaptive Learning Hub' [0.6990493129893112]
本研究は,「SAMCares」と呼ぶ革新的な研究仲間を紹介することを目的としている。
このシステムは、Large Language Model(LLM)とRetriever-Augmented Generation(RAG)を利用して、リアルタイム、コンテキスト認識、適応的な教育サポートを提供する。
論文 参考訳(メタデータ) (2024-05-01T05:39:07Z) - Large Language Models for Information Retrieval: A Survey [57.7992728506871]
情報検索は、項ベースの手法から高度なニューラルモデルとの統合へと進化してきた。
近年の研究では、大規模言語モデル(LLM)を活用してIRシステムの改善が試みられている。
LLMとIRシステムの合流点を探索し、クエリリライト、リトリバー、リランカー、リーダーといった重要な側面を含む。
論文 参考訳(メタデータ) (2023-08-14T12:47:22Z) - On the application of Large Language Models for language teaching and
assessment technology [18.735612275207853]
我々は,AIによる言語教育とアセスメントシステムに大規模言語モデルを導入する可能性を検討する。
より大きな言語モデルは、テキスト生成における以前のモデルよりも改善されていることがわかった。
自動階調と文法的誤り訂正において、よく知られたベンチマークで進捗が確認されたタスクについては、初期の調査では、彼ら自身の大きな言語モデルが最先端の結果を改善していないことが示されている。
論文 参考訳(メタデータ) (2023-07-17T11:12:56Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
本稿では,大規模言語モデルが提供するリッチな文脈情報と意味表現を利用して行動グラフを解析する新しいフレームワークを提案する。
この機能を利用することで、個々のユーザに対してパーソナライズされた、正確なジョブレコメンデーションが可能になる。
論文 参考訳(メタデータ) (2023-07-10T11:29:41Z) - Practical and Ethical Challenges of Large Language Models in Education:
A Systematic Scoping Review [5.329514340780243]
大規模言語モデル(LLM)は、テキストコンテンツの生成と分析の面倒なプロセスを自動化する可能性がある。
これらの革新の実践性と倫理性には懸念がある。
我々は2017年以降に発行された118件の査読論文の体系的スコーピングレビューを行い、研究の現状を明らかにした。
論文 参考訳(メタデータ) (2023-03-17T18:14:46Z) - ETHNO-DAANN: Ethnographic Engagement Classification by Deep Adversarial Transfer Learning [0.0]
学生のモチベーションは、ポストコロニアル教育改革と青少年雇用市場適応の必要性から、重要な研究課題である。
本稿では,エスノグラフィーエンゲージメント予測のための逆適応を用いたディープニューラルネットワークを用いたトランスファー学習アルゴリズムETHNO-DAANNを提案する。
論文 参考訳(メタデータ) (2023-01-21T22:07:26Z) - Knowledge-augmented Deep Learning and Its Applications: A Survey [60.221292040710885]
知識強化ディープラーニング(KADL)は、ドメイン知識を特定し、それをデータ効率、一般化可能、解釈可能なディープラーニングのためのディープモデルに統合することを目的としている。
本調査は,既存の研究成果を補足し,知識強化深層学習の一般分野における鳥眼研究の展望を提供する。
論文 参考訳(メタデータ) (2022-11-30T03:44:15Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
パーソナライズ学習の目的は、学習者の強みに合致する効果的な知識獲得トラックをデザインし、目標を達成するために弱みをバイパスすることである。
近年、人工知能(AI)と機械学習(ML)の隆盛は、パーソナライズされた教育を強化するための新しい視点を広げています。
論文 参考訳(メタデータ) (2021-01-19T12:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。