A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications
- URL: http://arxiv.org/abs/2404.04821v5
- Date: Wed, 09 Oct 2024 04:49:27 GMT
- Title: A Data-to-Product Multimodal Conceptual Framework to Achieve Automated Software Evolution for Context-rich Intelligent Applications
- Authors: Songhui Yue,
- Abstract summary: This study proposes a conceptual framework for achieving automated software evolution.
A Selective Sequential Scope Model (3S) model is developed based on the conceptual framework.
Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
- Score: 0.0
- License:
- Abstract: While AI is extensively transforming Software Engineering (SE) fields, SE is still in need of a framework to overall consider all phases to facilitate Automated Software Evolution (ASEv), particularly for intelligent applications that are context-rich, instead of conquering each division independently. Its complexity comes from the intricacy of the intelligent applications, the heterogeneity of the data sources, and the constant changes in the context. This study proposes a conceptual framework for achieving automated software evolution, emphasizing the importance of multimodality learning. A Selective Sequential Scope Model (3S) model is developed based on the conceptual framework, and it can be used to categorize existing and future research when it covers different SE phases and multimodal learning tasks. This research is a preliminary step toward the blueprint of a higher-level ASEv. The proposed conceptual framework can act as a practical guideline for practitioners to prepare themselves for diving into this area. Although the study is about intelligent applications, the framework and analysis methods may be adapted for other types of software as AI brings more intelligence into their life cycles.
Related papers
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - Next-Gen Software Engineering: AI-Assisted Big Models [0.0]
This paper aims to facilitate a synthesis between models and AI in software engineering.
The paper provides an overview of the current status of AI-assisted software engineering.
A vision of AI-assisted Big Models in SE is put forth, with the aim of capitalising on the advantages inherent to both approaches.
arXiv Detail & Related papers (2024-09-26T16:49:57Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - CSM-H-R: A Context Modeling Framework in Supporting Reasoning Automation for Interoperable Intelligent Systems and Privacy Protection [0.07499722271664144]
We propose a novel framework for automation of High Level Context (HLC) reasoning across intelligent systems at scale.
The design of the framework supports the sharing and inter context among intelligent systems and the components for handling CSMs and the management of hierarchy, relationship, and transition.
The implementation of the framework experiments on the HLC reasoning into vector and matrix computing and presents the potential to reach next level of automation.
arXiv Detail & Related papers (2023-08-21T22:21:15Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
We propose a novel approach to enable Model-Driven Software Engineering and Model-Driven AI Engineering.
In particular, we support Automated ML, thus assisting software engineers without deep AI knowledge in developing AI-intensive systems.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Learning Multi-Objective Curricula for Deep Reinforcement Learning [55.27879754113767]
Various automatic curriculum learning (ACL) methods have been proposed to improve the sample efficiency and final performance of deep reinforcement learning (DRL)
In this paper, we propose a unified automatic curriculum learning framework to create multi-objective but coherent curricula.
In addition to existing hand-designed curricula paradigms, we further design a flexible memory mechanism to learn an abstract curriculum.
arXiv Detail & Related papers (2021-10-06T19:30:25Z) - Which Design Decisions in AI-enabled Mobile Applications Contribute to
Greener AI? [7.194465440864905]
This report consists of a plan to conduct an empirical study to quantify the implications of the design decisions on AI-enabled applications performance.
We will implement both image-based and language-based neural networks in mobile applications to solve multiple image classification and text classification problems.
arXiv Detail & Related papers (2021-09-28T07:30:28Z) - AutonoML: Towards an Integrated Framework for Autonomous Machine
Learning [9.356870107137095]
Review seeks to motivate a more expansive perspective on what constitutes an automated/autonomous ML system.
In doing so, we survey developments in the following research areas.
We develop a conceptual framework throughout the review, augmented by each topic, to illustrate one possible way of fusing high-level mechanisms into an autonomous ML system.
arXiv Detail & Related papers (2020-12-23T11:01:10Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems.
No comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages.
This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages.
arXiv Detail & Related papers (2020-05-27T11:56:56Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.