論文の概要: Data Stream Sampling with Fuzzy Task Boundaries and Noisy Labels
- arxiv url: http://arxiv.org/abs/2404.04871v1
- Date: Sun, 7 Apr 2024 08:32:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:11:06.299670
- Title: Data Stream Sampling with Fuzzy Task Boundaries and Noisy Labels
- Title(参考訳): ファジィタスク境界とノイズラベルを用いたデータストリームサンプリング
- Authors: Yu-Hsi Chen,
- Abstract要約: 進化するデータストリームにおいてノイズラベルを緩和するために,ノイズテストデバイアス法 (NTD) と呼ばれる新しいサンプリング手法を提案する。
NTDは簡単に実装でき、様々なシナリオで実現可能である。
その結果,データストリーム中のノイズラベルのあるシナリオにおけるオンライン連続学習におけるNTDの有効性が検証された。
- 参考スコア(独自算出の注目度): 0.03464344220266879
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of continual learning, the presence of noisy labels within data streams represents a notable obstacle to model reliability and fairness. We focus on the data stream scenario outlined in pertinent literature, characterized by fuzzy task boundaries and noisy labels. To address this challenge, we introduce a novel and intuitive sampling method called Noisy Test Debiasing (NTD) to mitigate noisy labels in evolving data streams and establish a fair and robust continual learning algorithm. NTD is straightforward to implement, making it feasible across various scenarios. Our experiments benchmark four datasets, including two synthetic noise datasets (CIFAR10 and CIFAR100) and real-world noise datasets (mini-WebVision and Food-101N). The results validate the efficacy of NTD for online continual learning in scenarios with noisy labels in data streams. Compared to the previous leading approach, NTD achieves a training speedup enhancement over two times while maintaining or surpassing accuracy levels. Moreover, NTD utilizes less than one-fifth of the GPU memory resources compared to previous leading methods.
- Abstract(参考訳): 連続学習の領域では、データストリーム内にノイズラベルが存在することは、信頼性と公平性をモデル化するための顕著な障害である。
我々は,ファジィタスク境界とノイズラベルを特徴とする,関連する文献を概説したデータストリームシナリオに注目した。
この課題に対処するために,ノイズテストデバイアス法 (NTD) と呼ばれる新鮮で直感的なサンプリング手法を導入し,データストリームの進化においてノイズラベルを緩和し,公平かつ堅牢な連続学習アルゴリズムを確立する。
NTDは簡単に実装でき、様々なシナリオで実現可能である。
実験では,2つの合成ノイズデータセット(CIFAR10とCIFAR100)と実世界のノイズデータセット(mini-WebVisionとFood-101N)を含む4つのデータセットをベンチマークした。
その結果,データストリーム中のノイズラベルのあるシナリオにおけるオンライン連続学習におけるNTDの有効性が検証された。
従来の先行手法と比較して、NTDはトレーニングのスピードアップを2回以上向上し、精度を維持または超過する。
さらに、NTDは従来のリード方式に比べてGPUメモリリソースの5分の1未満を利用している。
関連論文リスト
- NAYER: Noisy Layer Data Generation for Efficient and Effective Data-free Knowledge Distillation [42.435293471992274]
Data-Free Knowledge Distillation (DFKD)は、教師のニューラルネットワークから学生のニューラルネットワークに、元のデータにアクセスせずに知識を移すことによって、近年大きな進歩を遂げている。
既存のアプローチは、本質的に意味のある情報を欠くランダムノイズ入力からサンプルを生成する際に、重大な課題に直面する。
本稿では,入力からノイズ層へランダムなソースを移動させる新しいノイズ層生成法(NAYER)を提案し,その入力として有意な定数ラベルテキスト埋め込み(LTE)を利用する。
論文 参考訳(メタデータ) (2023-09-30T05:19:10Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
ディープニューラルネットワーク(DNN)の記憶効果は,近年のラベルノイズ学習法において重要な役割を担っている。
ラベルノイズを用いたディープラーニングのための新しい特徴埋め込み方式, LabEl Noise Dilution (LEND) を提案する。
論文 参考訳(メタデータ) (2022-06-27T02:45:09Z) - Robust Meta-learning with Sampling Noise and Label Noise via
Eigen-Reptile [78.1212767880785]
Meta-learnerは、利用可能なサンプルがわずかしかないため、過度に適合する傾向がある。
ノイズの多いラベルでデータを扱う場合、メタラーナーはラベルノイズに対して非常に敏感になる可能性がある。
本稿では,タスク固有のパラメータの主要な方向でメタパラメータを更新するEigen-Reptile(ER)を提案する。
論文 参考訳(メタデータ) (2022-06-04T08:48:02Z) - Online Continual Learning on a Contaminated Data Stream with Blurry Task
Boundaries [17.43350151320054]
大量の連続学習(CL)手法は、クリーンなラベルを持つデータストリームを前提としており、ノイズの多いデータストリームの下でのオンライン学習シナリオはまだ探索されていない。
我々は、既存のCLメソッドが苦労しているラベル付きぼやけたデータストリームからオンライン学習のより実践的なCLタスク設定について検討する。
本稿では,ラベルノイズを意識した多様なサンプリングと,半教師付き学習による頑健な学習の統一的アプローチにより,メモリの管理と利用を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:52:45Z) - Learning with Neighbor Consistency for Noisy Labels [69.83857578836769]
特徴空間におけるトレーニング例間の類似性を利用した雑音ラベルから学習する手法を提案する。
合成(CIFAR-10, CIFAR-100)とリアル(mini-WebVision, Clothing1M, mini-ImageNet-Red)の両方のノイズを評価するデータセットの評価を行った。
論文 参考訳(メタデータ) (2022-02-04T15:46:27Z) - Learning with Noisy Labels Revisited: A Study Using Real-World Human
Annotations [54.400167806154535]
ノイズラベルを用いた学習に関する既存の研究は、主に合成ラベルノイズに焦点を当てている。
本研究は2つの新しいベンチマークデータセット(CIFAR-10N, CIFAR-100N)を示す。
実世界のノイズラベルは古典的に採用されたクラス依存のラベルではなく、インスタンス依存のパターンに従うことを示す。
論文 参考訳(メタデータ) (2021-10-22T22:42:11Z) - Learning from Noisy Labels via Dynamic Loss Thresholding [69.61904305229446]
我々はDLT(Dynamic Loss Thresholding)という新しい手法を提案する。
トレーニングプロセス中、DLTは各サンプルの損失値を記録し、動的損失閾値を算出する。
CIFAR-10/100 と Clothing1M の実験は、最近の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2021-04-01T07:59:03Z) - Noise-resistant Deep Metric Learning with Ranking-based Instance
Selection [59.286567680389766]
PRISM(Probabilistic Ranking-based Instance Selection with Memory)と呼ばれるDMLの耐騒音トレーニング技術を提案する。
PRISMは、ニューラルネットワークの以前のバージョンから抽出された画像特徴との平均的類似性を用いて、ミニバッチ内のノイズデータを識別する。
メモリバンクが生み出す高い計算コストを緩和するために,個々のデータポイントをクラスセンタに置き換える高速化手法を提案する。
論文 参考訳(メタデータ) (2021-03-30T03:22:17Z) - Tackling Instance-Dependent Label Noise via a Universal Probabilistic
Model [80.91927573604438]
本稿では,ノイズラベルをインスタンスに明示的に関連付ける,単純かつ普遍的な確率モデルを提案する。
合成および実世界のラベルノイズを用いたデータセット実験により,提案手法がロバスト性に大きな改善をもたらすことを確認した。
論文 参考訳(メタデータ) (2021-01-14T05:43:51Z) - Audio Tagging by Cross Filtering Noisy Labels [26.14064793686316]
そこで我々はCrossFilterという新しいフレームワークを提案し,音声タグ付けにおけるノイズラベル問題に対処する。
提案手法は最先端の性能を達成し,アンサンブルモデルを超えている。
論文 参考訳(メタデータ) (2020-07-16T07:55:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。