論文の概要: A Bird-Eye view on DNA Storage Simulators
- arxiv url: http://arxiv.org/abs/2404.04877v1
- Date: Sun, 7 Apr 2024 08:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:11:06.288728
- Title: A Bird-Eye view on DNA Storage Simulators
- Title(参考訳): DNA貯蔵シミュレータのバードアイビュー
- Authors: Sanket Doshi, Mihir Gohel, Manish K. Gupta,
- Abstract要約: そこで本研究では,異なる領域でDNAストレージシミュレーションを行うソフトウェアについて概説する。
ドメイン、実装技術、顧客/商業的ユーザビリティに基づいて、3つの異なるソフトウェアを提示する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current world due to the huge demand for storage, DNA-based storage solution sounds quite promising because of their longevity, low power consumption, and high capacity. However in real life storing data in the form of DNA is quite expensive, and challenging. Therefore researchers and developers develop such kind of software that helps simulate real-life DNA storage without worrying about the cost. This paper aims to review some of the software that performs DNA storage simulations in different domains. The paper also explains the core concepts such as synthesis, sequencing, clustering, reconstruction, GC window, K-mer window, etc and some overview on existing algorithms. Further, we present 3 different softwares on the basis of domain, implementation techniques, and customer/commercial usability.
- Abstract(参考訳): ストレージの需要が大きい現在の世界では、DNAベースのストレージソリューションは、その長寿命、低消費電力、高容量のために、かなり有望に聞こえる。
しかし、実生活でデータをDNA形式で保存することは、非常に高価で困難である。
そのため、研究者や開発者は、コストを気にせずに実生活のDNAストレージをシミュレートするソフトウェアを開発しています。
そこで本研究では,異なる領域でDNAストレージシミュレーションを行うソフトウェアについて概説する。
また、合成、シークエンシング、クラスタリング、再構築、GCウィンドウ、K-merウィンドウなどのコアコンセプトや、既存のアルゴリズムの概要についても説明している。
さらに、ドメイン、実装技術、顧客/商業的ユーザビリティに基づく3つの異なるソフトウェアを提示する。
関連論文リスト
- DNA Family: Boosting Weight-Sharing NAS with Block-Wise Supervisions [121.05720140641189]
蒸留型ニューラルアーキテクチャ(DNA)技術を用いたモデル群を開発した。
提案するDNAモデルでは,アルゴリズムを用いてサブサーチ空間にのみアクセス可能な従来の手法とは対照的に,すべてのアーキテクチャ候補を評価できる。
当社のモデルでは,モバイルコンボリューションネットワークと小型ビジョントランスフォーマーにおいて,ImageNet上で78.9%,83.6%の最先端トップ1精度を実現している。
論文 参考訳(メタデータ) (2024-03-02T22:16:47Z) - DNA-Rendering: A Diverse Neural Actor Repository for High-Fidelity
Human-centric Rendering [126.00165445599764]
ニューラルアクターレンダリングのための人間のパフォーマンスデータの大規模かつ高忠実なリポジトリであるDNAレンダリングを提案する。
我々のデータセットには、1500人以上の被験者、5000のモーションシーケンス、67.5Mのフレームのデータボリュームが含まれています。
我々は,最大解像度4096 x 3000の60個の同期カメラと15fpsの速度,ステルカメラキャリブレーションステップを含む,データをキャプチャするプロフェッショナルなマルチビューシステムを構築した。
論文 参考訳(メタデータ) (2023-07-19T17:58:03Z) - Online Continual Learning Without the Storage Constraint [67.66235695269839]
我々は、kNN分類器を固定された事前訓練された特徴抽出器とともに継続的に更新する簡単なアルゴリズムを提案する。
高速に変化するストリームに適応し、安定性のギャップをゼロにし、小さな計算予算内で動作し、機能のみを格納することで、ストレージ要件を低くすることができる。
2つの大規模オンライン連続学習データセットにおいて、既存の手法を20%以上の精度で上回ることができる。
論文 参考訳(メタデータ) (2023-05-16T08:03:07Z) - Efficient Automation of Neural Network Design: A Survey on
Differentiable Neural Architecture Search [70.31239620427526]
微分可能なニューラルネットワーク探索(DNAS)は、ディープニューラルネットワークアーキテクチャの発見を自動化するトレンドのアプローチとして、急速に自らを強制した。
この増加は主に、最初の主要なDNAS法の一つであるDARTSの人気が原因である。
本総説では,DNASに特に焦点をあて,最近のアプローチを概観する。
論文 参考訳(メタデータ) (2023-04-11T13:15:29Z) - DNA data storage, sequencing data-carrying DNA [2.4493299476776778]
深部モデルサイズと誤り訂正符号の精度トレードオフについて検討する。
モデルサイズが107MBから始めると、単純な誤り訂正符号を用いることで、モデル圧縮による精度の低下を補償できることが示される。
論文 参考訳(メタデータ) (2022-05-11T13:31:57Z) - Image Storage on Synthetic DNA Using Autoencoders [6.096779295981377]
本稿では,DNAデータ記憶に適応した畳み込みオートエンコーダを用いた画像圧縮手法について述べる。
ここで提示されたモデルアーキテクチャは、画像を効率よく圧縮し、それを第四次コードにエンコードし、最終的に合成DNA分子に格納するように設計されている。
論文 参考訳(メタデータ) (2022-03-18T14:17:48Z) - Single-Read Reconstruction for DNA Data Storage Using Transformers [0.0]
エンコーダ・デコーダ・トランスフォーマアーキテクチャを用いたDNAベースのデータストレージのためのシングルリード再構成手法を提案する。
本モデルでは,DNA鎖の1つの読み取りから元のデータを再構成する際の誤り率を低くする。
これは、DNAベースのストレージにおけるシングルリード再構築にディープラーニングモデルを使用した最初のデモンストレーションである。
論文 参考訳(メタデータ) (2021-09-12T10:01:59Z) - Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and
Deep Learning [49.3231734733112]
シミュレーションデータに基づいてトレーニングされたDeep Neural Networks(DNN)、Product(TP)ベースのエラー修正コード(ECC)、安全マージンを1つのコヒーレントパイプラインに組み合わせたモジュラーで総合的なアプローチを示す。
我々の研究は, 最大で x3200 の速度向上, 40%の精度向上により, 現在の指導的ソリューションの改善を実現し, 高雑音下では1ベースあたり1.6ビットのコードレートを提供する。
論文 参考訳(メタデータ) (2021-08-31T18:21:20Z) - Efficient approximation of DNA hybridisation using deep learning [0.0]
本研究は,DNAハイブリダイゼーションの予測に応用された機械学習手法の総合的研究である。
機械学習アルゴリズムの広い範囲の使用を可能にする2.5百万以上のデータポイントの合成ハイブリッド化データセットを紹介します。
論文 参考訳(メタデータ) (2021-02-19T19:23:49Z) - Neural Network Compression for Noisy Storage Devices [71.4102472611862]
従来、モデル圧縮と物理ストレージは分離される。
このアプローチでは、ストレージは圧縮されたモデルの各ビットを等しく扱い、各ビットに同じ量のリソースを割り当てるように強制される。
i) 各メモリセルの容量を最大化するためにアナログメモリを使用し, (ii) モデル圧縮と物理ストレージを共同で最適化し, メモリの有用性を最大化する。
論文 参考訳(メタデータ) (2021-02-15T18:19:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。