論文の概要: A Clinical-oriented Multi-level Contrastive Learning Method for Disease Diagnosis in Low-quality Medical Images
- arxiv url: http://arxiv.org/abs/2404.04887v1
- Date: Sun, 7 Apr 2024 09:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:01:22.004139
- Title: A Clinical-oriented Multi-level Contrastive Learning Method for Disease Diagnosis in Low-quality Medical Images
- Title(参考訳): 低画質医用画像における疾患診断のための多段階コントラスト学習法
- Authors: Qingshan Hou, Shuai Cheng, Peng Cao, Jinzhu Yang, Xiaoli Liu, Osmar R. Zaiane, Yih Chung Tham,
- Abstract要約: コントラスト学習(CL)により誘導される疾患診断法は,病変の特徴表現において有意な優位性を示した。
本稿では,病変の特徴を抽出するためのモデルの能力向上を目的とした,臨床指向型多段階CLフレームワークを提案する。
提案されたCLフレームワークは、EyeQとChest X-rayの2つの公開医療画像データセットで検証されている。
- 参考スコア(独自算出の注目度): 4.576524795036682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning offers a conduit to elucidate distinctive features within the latent space and interpret the deep models. However, the randomness of lesion distribution and the complexity of low-quality factors in medical images pose great challenges for models to extract key lesion features. Disease diagnosis methods guided by contrastive learning (CL) have shown significant advantages in lesion feature representation. Nevertheless, the effectiveness of CL is highly dependent on the quality of the positive and negative sample pairs. In this work, we propose a clinical-oriented multi-level CL framework that aims to enhance the model's capacity to extract lesion features and discriminate between lesion and low-quality factors, thereby enabling more accurate disease diagnosis from low-quality medical images. Specifically, we first construct multi-level positive and negative pairs to enhance the model's comprehensive recognition capability of lesion features by integrating information from different levels and qualities of medical images. Moreover, to improve the quality of the learned lesion embeddings, we introduce a dynamic hard sample mining method based on self-paced learning. The proposed CL framework is validated on two public medical image datasets, EyeQ and Chest X-ray, demonstrating superior performance compared to other state-of-the-art disease diagnostic methods.
- Abstract(参考訳): 表現学習は、潜在空間内の特徴を解明し、深いモデルを理解するための導管を提供する。
しかし, 医用画像における病変分布のランダム性と低品質因子の複雑さは, 重要な病変の特徴を抽出するモデルにとって大きな課題となっている。
コントラスト学習(CL)によって誘導される疾患診断法は,病変の特徴表現において有意な優位性を示した。
それでも、CLの有効性は正と負のサンプルペアの品質に大きく依存している。
本研究は,病変の特徴を抽出し,病変と低品質因子を識別する能力を高めることを目的とした,低品質な医用画像からより正確な疾患診断を可能にする,臨床指向型多段階CLフレームワークを提案する。
具体的には,医用画像のさまざまなレベルと品質から情報を統合することで,病変の特徴の包括的認識能力を高めるために,まずマルチレベル正対と負対を構築した。
さらに, 学習した病変埋め込みの品質を向上させるために, セルフペースト学習に基づく動的ハードサンプルマイニング手法を提案する。
提案したCLフレームワークは、EyeQとChest X-rayの2つの公開医用画像データセットで検証され、他の最先端の疾患診断方法と比較して優れた性能を示す。
関連論文リスト
- Cross- and Intra-image Prototypical Learning for Multi-label Disease Diagnosis and Interpretation [15.303610605543746]
医用画像からの正確なマルチラベル診断と解釈のためのクロスタイプおよびイントライメージ型学習フレームワークを提案する。
本稿では,一貫性のある画像内情報を効果的に活用し,解釈の堅牢性と予測性能を向上させる2段階アライメントに基づく新たな正規化戦略を提案する。
論文 参考訳(メタデータ) (2024-11-07T10:46:01Z) - FairSkin: Fair Diffusion for Skin Disease Image Generation [54.29840149709033]
拡散モデル (DM) は, 合成医用画像の生成において主要な手法となっているが, 臨界二倍偏差に悩まされている。
このようなバイアスを3段階のリサンプリング機構によって緩和する新しいDMフレームワークであるFairSkinを提案する。
本手法は, 画像の多様性と品質を著しく向上させ, 臨床環境における皮膚疾患の検出精度の向上に寄与する。
論文 参考訳(メタデータ) (2024-10-29T21:37:03Z) - Enhancing Multimodal Medical Image Classification using Cross-Graph Modal Contrastive Learning [5.660131312162423]
本稿では,マルチモーダルな医用画像分類のためのクロスグラフ・モーダルコントラスト学習フレームワークを提案する。
提案手法は、パーキンソン病(PD)データセットと公共メラノーマデータセットの2つのデータセットで評価される。
以上の結果から,CGMCLは従来手法よりも精度,解釈可能性,早期疾患予測に優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-10-23T01:25:25Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
本研究は, スマートフォンで撮影した画像と本質的な臨床および人口統計情報を統合することで, 皮膚病変を分類する新しいマルチモーダル手法を提案する。
この手法の特徴は、超高解像度画像予測に焦点を当てた補助的なタスクの統合である。
PAD-UFES20データセットを用いて,様々なディープラーニングアーキテクチャを用いて実験を行った。
論文 参考訳(メタデータ) (2024-02-16T05:16:20Z) - A Novel Multi-Task Model Imitating Dermatologists for Accurate
Differential Diagnosis of Skin Diseases in Clinical Images [27.546559936765863]
皮膚科医の診断手順と戦略を模倣して,このギャップを埋めるために,新しいマルチタスクモデルDermImitFormerを提案する。
モデルは、疾患自体に加えて、身体の部分と病変の属性を同時に予測し、診断精度を高め、診断の解釈性を向上させる。
論文 参考訳(メタデータ) (2023-07-17T08:05:30Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Image Quality-aware Diagnosis via Meta-knowledge Co-embedding [11.14366093273983]
本稿では,タスクネットとメタラーナーの2つからなるメタ知識協調型ネットワークを提案する。
Task Netは明示的な品質情報利用メカニズムを構築し、知識を組み込んだ機能による診断を強化する。
Meta Learnerは、メタラーニングと共同エンコーディングマスキングを通じて、これらの機能のセマンティクスの有効性と制約を保証する。
論文 参考訳(メタデータ) (2023-03-27T09:35:44Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
複数のインスタンス学習モデルを説明するための4つの属性法について検討する。
急性骨髄性白血病の2つのデータセットと100万以上の単細胞画像について検討した。
我々は、属性マップと医療専門家の注釈を比較し、モデルの意思決定が人間の基準とどのように異なるかを確認する。
論文 参考訳(メタデータ) (2023-03-15T14:00:11Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。