AI2Apps: A Visual IDE for Building LLM-based AI Agent Applications
- URL: http://arxiv.org/abs/2404.04902v1
- Date: Sun, 7 Apr 2024 10:02:09 GMT
- Title: AI2Apps: A Visual IDE for Building LLM-based AI Agent Applications
- Authors: Xin Pang, Zhucong Li, Jiaxiang Chen, Yuan Cheng, Yinghui Xu, Yuan Qi,
- Abstract summary: We introduce AI2Apps, a Visual Integrated Development Environment (Visual IDE) with full-cycle capabilities that accelerates developers to build deployable AI agent Applications.
On one hand, AI2Apps integrates a comprehensive development toolkit ranging from a prototyping canvas and AI-assisted code editor to agent debugger, management system, and deployment tools all within a web-based graphical user interface.
On the other hand, AI2Apps visualizes reusable front-end and back-end code as intuitive drag-and-drop components.
- Score: 23.3982451133068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce AI2Apps, a Visual Integrated Development Environment (Visual IDE) with full-cycle capabilities that accelerates developers to build deployable LLM-based AI agent Applications. This Visual IDE prioritizes both the Integrity of its development tools and the Visuality of its components, ensuring a smooth and efficient building experience.On one hand, AI2Apps integrates a comprehensive development toolkit ranging from a prototyping canvas and AI-assisted code editor to agent debugger, management system, and deployment tools all within a web-based graphical user interface. On the other hand, AI2Apps visualizes reusable front-end and back-end code as intuitive drag-and-drop components. Furthermore, a plugin system named AI2Apps Extension (AAE) is designed for Extensibility, showcasing how a new plugin with 20 components enables web agent to mimic human-like browsing behavior. Our case study demonstrates substantial efficiency improvements, with AI2Apps reducing token consumption and API calls when debugging a specific sophisticated multimodal agent by approximately 90% and 80%, respectively. The AI2Apps, including an online demo, open-source code, and a screencast video, is now publicly accessible.
Related papers
- Improving Performance of Commercially Available AI Products in a Multi-Agent Configuration [11.626057561212694]
Crowdbotics PRD AI is a tool for generating software requirements using AI.
GitHub Copilot is an AI pair-programming tool.
By sharing business requirements from PRD AI, we improve the code suggestion capabilities of GitHub Copilot by 13.8% and developer task success rate by 24.5%.
arXiv Detail & Related papers (2024-10-29T15:28:19Z) - AutoGLM: Autonomous Foundation Agents for GUIs [51.276965515952]
We present AutoGLM, a new series in the ChatGLM family, designed to serve as foundation agents for autonomous control of digital devices through Graphical User Interfaces (GUIs)
We have developed AutoGLM as a practical foundation agent system for real-world GUI interactions.
Our evaluations demonstrate AutoGLM's effectiveness across multiple domains.
arXiv Detail & Related papers (2024-10-28T17:05:10Z) - Beyond Browsing: API-Based Web Agents [58.39129004543844]
API-based agents outperform web browsing agents in experiments on WebArena.
Hybrid Agents out-perform both others nearly uniformly across tasks.
Results strongly suggest that when APIs are available, they present an attractive alternative to relying on web browsing alone.
arXiv Detail & Related papers (2024-10-21T19:46:06Z) - AutoGen Studio: A No-Code Developer Tool for Building and Debugging Multi-Agent Systems [31.113305753414913]
AUTOGEN STUDIO is a no-code developer tool for rapidly prototyping multi-agent systems.
It provides an intuitive drag-and-drop UI for agent specification, interactive evaluation, and a gallery of reusable agent components.
arXiv Detail & Related papers (2024-08-09T03:27:37Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.
We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z) - Rapid Mobile App Development for Generative AI Agents on MIT App Inventor [12.091916451641021]
We present a methodology for the rapid development of AI agent applications using the development platform provided by MIT App Inventor.
We share the development journey of three distinct mobile applications: SynchroNet for fostering sustainable communities; ProductiviTeams for addressing procrastination; and iHELP for enhancing community safety.
arXiv Detail & Related papers (2024-04-01T02:35:19Z) - AutoDev: Automated AI-Driven Development [9.586330606828643]
AutoDev is a fully automated AI-driven software development framework.
It enables users to define complex software engineering objectives, which are assigned to AutoDev's autonomous AI Agents.
AutoDev establishes a secure development environment by confining all operations within Docker containers.
arXiv Detail & Related papers (2024-03-13T07:12:03Z) - Agents: An Open-source Framework for Autonomous Language Agents [98.91085725608917]
We consider language agents as a promising direction towards artificial general intelligence.
We release Agents, an open-source library with the goal of opening up these advances to a wider non-specialist audience.
arXiv Detail & Related papers (2023-09-14T17:18:25Z) - OpenAGI: When LLM Meets Domain Experts [51.86179657467822]
Human Intelligence (HI) excels at combining basic skills to solve complex tasks.
This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents.
We introduce OpenAGI, an open-source platform designed for solving multi-step, real-world tasks.
arXiv Detail & Related papers (2023-04-10T03:55:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.