論文の概要: MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection
- arxiv url: http://arxiv.org/abs/2404.04910v3
- Date: Wed, 26 Mar 2025 04:08:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-27 16:24:42.418641
- Title: MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection
- Title(参考訳): MonoTAKD:モノクロ3次元物体検出のためのアシスタント知識蒸留
- Authors: Hou-I Liu, Christine Wu, Jen-Hao Cheng, Wenhao Chai, Shian-Yun Wang, Gaowen Liu, Hugo Latapie, Jhih-Ciang Wu, Jenq-Neng Hwang, Hong-Han Shuai, Wen-Huang Cheng,
- Abstract要約: カメラを用いた学生モデルにロバストな3次元視覚知識を伝達するために,モノクラー指導支援知識蒸留(Monocular teaching Assistant Knowledge Distillation, MonoTAKD)を導入する。
実験の結果,MonoTAKDはKITTI3Dデータセット上で最先端の性能を達成できた。
- 参考スコア(独自算出の注目度): 43.67544474555326
- License:
- Abstract: Monocular 3D object detection (Mono3D) holds noteworthy promise for autonomous driving applications owing to the cost-effectiveness and rich visual context of monocular camera sensors. However, depth ambiguity poses a significant challenge, as it requires extracting precise 3D scene geometry from a single image, resulting in suboptimal performance when transferring knowledge from a LiDAR-based teacher model to a camera-based student model. To facilitate effective distillation, we introduce Monocular Teaching Assistant Knowledge Distillation (MonoTAKD), which proposes a camera-based teaching assistant (TA) model to transfer robust 3D visual knowledge to the student model, leveraging the smaller feature representation gap. Additionally, we define 3D spatial cues as residual features that capture the differences between the teacher and the TA models. We then leverage these cues to improve the student model's 3D perception capabilities. Experimental results show that our MonoTAKD achieves state-of-the-art performance on the KITTI3D dataset. Furthermore, we evaluate the performance on nuScenes and KITTI raw datasets to demonstrate the generalization of our model to multi-view 3D and unsupervised data settings. Our code is available at https://github.com/hoiliu-0801/MonoTAKD.
- Abstract(参考訳): モノクラー3Dオブジェクト検出(Monocular 3D)は、モノクラーカメラセンサーのコスト効率とリッチな視覚的コンテキストのため、自律運転アプリケーションにとって注目すべき約束である。
しかし、奥行きの曖昧さは、単一の画像から正確な3次元シーン形状を抽出する必要があるため、LiDARベースの教師モデルからカメラベースの学生モデルに知識を移す際には、最適以下の性能が得られるため、大きな課題となる。
有効蒸留を容易にするために, より小さな特徴表現ギャップを生かして, 学生モデルに堅牢な3D視覚知識を伝達する, カメラベースの教示アシスタント(TA)モデルを提案するMonocular Teaching Assistant Knowledge Distillation (MonoTAKD)を提案する。
さらに,3次元空間的手がかりを教師とTAモデルの違いを捉えた残像として定義する。
次に,学生モデルの3次元知覚能力を向上させるために,これらの手法を利用する。
実験の結果,MonoTAKDはKITTI3Dデータセット上で最先端の性能を達成できた。
さらに, nuScenesとKITTIの生データセットの性能を評価し, マルチビュー3Dおよび教師なしデータ設定へのモデルの一般化を実証した。
私たちのコードはhttps://github.com/hoiliu-0801/MonoTAKD.comで公開されています。
関連論文リスト
- Weakly Supervised Monocular 3D Detection with a Single-View Image [58.57978772009438]
モノクロ3D検出は、単一視点画像からの正確な3Dオブジェクトのローカライゼーションを目的としている。
SKD-WM3Dは弱い教師付き単分子3D検出フレームワークである。
我々は,SKD-WM3Dが最先端技術を超え,多くの完全教師付き手法と同等であることを示した。
論文 参考訳(メタデータ) (2024-02-29T13:26:47Z) - ODM3D: Alleviating Foreground Sparsity for Semi-Supervised Monocular 3D
Object Detection [15.204935788297226]
ODM3Dフレームワークは、トレーニング中にLiDARドメインの知識を単分子検出器に注入するために、様々なレベルでのクロスモーダルな知識蒸留を必要とする。
既存手法の準最適トレーニングの主要因として,前景の空間空間を同定することにより,LiDAR点に埋め込まれた正確な位置化情報を活用する。
KITTI検証とテストベンチマークの両方で1位にランクインし、教師付きまたは半教師付きである既存のモノクラー手法をはるかに上回っている。
論文 参考訳(メタデータ) (2023-10-28T07:12:09Z) - SimDistill: Simulated Multi-modal Distillation for BEV 3D Object
Detection [56.24700754048067]
多視点カメラによる3Dオブジェクト検出は低コストで普及しているが、カメラデータのみから正確に3D形状を推定することは依然として困難である。
モデルアーキテクチャと蒸留戦略を慎重に構築し,シミュレートされたマルチモーダル蒸留(SimDistill)法を提案する。
我々のSimDistillは、コスト効率のよいカメラのみの配置を維持しながら、3Dオブジェクト検出のためのより良い特徴表現を学習することができる。
論文 参考訳(メタデータ) (2023-03-29T16:08:59Z) - X$^3$KD: Knowledge Distillation Across Modalities, Tasks and Stages for
Multi-Camera 3D Object Detection [45.32989526953387]
本稿では,X$3$KDについて紹介する。X$3$KDはマルチカメラ3DODのための様々なモダリティ,タスク,ステージにまたがる総合的な知識蒸留フレームワークである。
変換後,マルチカメラ特徴の3次元世界表現を改善するために,クロスモーダルな特徴蒸留 (X-FD) と対角訓練 (X-AT) を適用した。
最終的なX$3$KDモデルは、nuScenesとデータセットに関する従来の最先端アプローチよりも優れています。
論文 参考訳(メタデータ) (2023-03-03T20:29:49Z) - Attention-Based Depth Distillation with 3D-Aware Positional Encoding for
Monocular 3D Object Detection [10.84784828447741]
ADDは、3D対応の位置符号化を備えた注意に基づく深度知識蒸留フレームワークである。
教師の設計によると、私たちのフレームワークはシームレスで、ドメインギャップフリーで、実装が容易で、オブジェクト指向の地層深度と互換性があります。
我々は,3つの代表的な単分子検出器上でのフレームワークを実装し,予測計算コストの増大を伴わず,最先端の性能を実現する。
論文 参考訳(メタデータ) (2022-11-30T06:39:25Z) - MonoDistill: Learning Spatial Features for Monocular 3D Object Detection [80.74622486604886]
本稿では,LiDAR信号からの空間情報を単分子3D検出器に導入するための簡易かつ効果的な手法を提案する。
得られたデータを用いて、ベースラインモデルと同じアーキテクチャで3D検出器をトレーニングする。
実験の結果,提案手法はベースラインモデルの性能を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-01-26T09:21:41Z) - SGM3D: Stereo Guided Monocular 3D Object Detection [62.11858392862551]
SGM3Dと呼ばれるステレオ誘導単分子物体検出ネットワークを提案する。
ステレオ画像から抽出したロバストな3次元特徴を利用して、モノクル画像から得られた特徴を強化する。
本手法は,余分な計算コストを伴わずに性能を向上させるために,他の多くの単分子的手法に統合することができる。
論文 参考訳(メタデータ) (2021-12-03T13:57:14Z) - Kinematic 3D Object Detection in Monocular Video [123.7119180923524]
運動運動を注意深く利用して3次元位置決めの精度を向上させるモノクロ映像を用いた3次元物体検出法を提案する。
我々は、KITTI自動運転データセット内のモノクロ3次元物体検出とバードアイビュータスクの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-07-19T01:15:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。