論文の概要: Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers
- arxiv url: http://arxiv.org/abs/2404.04925v1
- Date: Sun, 7 Apr 2024 11:52:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 18:51:34.457212
- Title: Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers
- Title(参考訳): 多言語大言語モデル:資源・分類・フロンティアの調査
- Authors: Libo Qin, Qiguang Chen, Yuhang Zhou, Zhi Chen, Yinghui Li, Lizi Liao, Min Li, Wanxiang Che, Philip S. Yu,
- Abstract要約: 本稿では,MLLM(Multilingual Large Language Model)文学における最近の進歩と新たなトレンドを要約する一貫した視点を提示する。
私たちの研究がコミュニティに迅速なアクセスを提供し、MLLMにおける画期的な研究を促進することを願っています。
- 参考スコア(独自算出の注目度): 81.47046536073682
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual Large Language Models are capable of using powerful Large Language Models to handle and respond to queries in multiple languages, which achieves remarkable success in multilingual natural language processing tasks. Despite these breakthroughs, there still remains a lack of a comprehensive survey to summarize existing approaches and recent developments in this field. To this end, in this paper, we present a thorough review and provide a unified perspective to summarize the recent progress as well as emerging trends in multilingual large language models (MLLMs) literature. The contributions of this paper can be summarized: (1) First survey: to our knowledge, we take the first step and present a thorough review in MLLMs research field according to multi-lingual alignment; (2) New taxonomy: we offer a new and unified perspective to summarize the current progress of MLLMs; (3) New frontiers: we highlight several emerging frontiers and discuss the corresponding challenges; (4) Abundant resources: we collect abundant open-source resources, including relevant papers, data corpora, and leaderboards. We hope our work can provide the community with quick access and spur breakthrough research in MLLMs.
- Abstract(参考訳): 多言語大言語モデルは、複数の言語におけるクエリの処理と応答に強力な大規模言語モデルを使用することができるため、多言語自然言語処理タスクにおいて顕著な成功を収めている。
これらのブレークスルーにもかかわらず、この分野での既存のアプローチと最近の開発を要約する包括的な調査がまだ残っていない。
そこで本稿では,多言語大言語モデル(MLLM)の文献化の進展とともに,最近の進歩を概観する一貫した視点を提示する。
本論文のコントリビューションは,(1)知識に対する最初の調査,(2)多言語アライメントによるMLLMの研究分野の徹底的な見直し,(2)新たな分類学:MLLMの現在の進歩を要約する新たな統一的な視点を提供する,(3)新たなフロンティア:新興フロンティアをいくつか強調し,それに伴う課題について議論する,(3)アウンダントリソース:関連する論文やデータコーパス,リーダボードなど,豊富なオープンソースリソースを収集する。
私たちの研究がコミュニティに迅速なアクセスを提供し、MLLMにおける画期的な研究を促進することを願っています。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - A Survey of Large Language Models for European Languages [4.328283741894074]
大規模言語モデル(LLM)は、多岐にわたる自然言語処理における高い性能のため、大きな注目を集めている。
LLaMA, PaLM, GPT, MoE など LLM ファミリーの概要を報告する。
大規模言語モデルの事前学習に使用される共通単言語および多言語データセットの包括的要約を提供する。
論文 参考訳(メタデータ) (2024-08-27T13:10:05Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [48.314619377988436]
LLM(Large Language Models)の急速な開発は、自然言語処理における顕著な多言語機能を示している。
LLMのブレークスルーにもかかわらず、多言語シナリオの研究は依然として不十分である。
本調査は,多言語問題に対する研究コミュニティの取り組みを支援することを目的としており,LLMに基づく多言語自然言語処理における中核概念,鍵技術,最新の発展の包括的理解を提供する。
論文 参考訳(メタデータ) (2024-05-17T17:47:39Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
本稿では,MLLMの進化,鍵技術,多言語能力について概説する。
我々は、MLLMのトレーニングや下流タスクに適した多言語データセットに広く利用されている多言語コーパスについて検討する。
本稿では,MLLMのカテゴリと評価指標を含むバイアスについて論じ,既存のデバイアス手法を要約する。
論文 参考訳(メタデータ) (2024-04-01T05:13:56Z) - Large Language Models for Generative Information Extraction: A Survey [89.71273968283616]
大規模言語モデル(LLM)は、テキスト理解と生成において顕著な能力を示した。
各種IEサブタスクと技術の観点から,これらの作品を分類して概観する。
我々は,最も先進的な手法を実証的に分析し,LLMによるIEタスクの出現傾向を明らかにする。
論文 参考訳(メタデータ) (2023-12-29T14:25:22Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - A Survey on Multimodal Large Language Models [71.63375558033364]
GPT-4Vで表されるマルチモーダル大言語モデル(MLLM)は、新たな研究ホットスポットとなっている。
本稿では,MLLMの最近の進歩を追跡・要約することを目的とする。
論文 参考訳(メタデータ) (2023-06-23T15:21:52Z) - Multilingual Multimodality: A Taxonomical Survey of Datasets,
Techniques, Challenges and Opportunities [10.721189858694396]
マルチ言語とマルチモーダル(MultiX)ストリームの統合について検討する。
我々は、並列アノテーションで研究された言語、金または銀のデータを調べ、これらのモダリティと言語がモデリングにおいてどのように相互作用するかを理解する。
モデリングアプローチの長所と短所とともに、どのシナリオを確実に使用できるのかをよりよく理解するために、モデリングアプローチについて説明します。
論文 参考訳(メタデータ) (2022-10-30T21:46:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。