Efficient Surgical Tool Recognition via HMM-Stabilized Deep Learning
- URL: http://arxiv.org/abs/2404.04992v1
- Date: Sun, 7 Apr 2024 15:27:35 GMT
- Title: Efficient Surgical Tool Recognition via HMM-Stabilized Deep Learning
- Authors: Haifeng Wang, Hao Xu, Jun Wang, Jian Zhou, Ke Deng,
- Abstract summary: We propose an HMM-stabilized deep learning method for tool presence detection.
A range of experiments confirm that the proposed approaches achieve better performance with lower training and running costs.
These results suggest that popular deep learning approaches with over-complicated model structures may suffer from inefficient utilization of data.
- Score: 25.146476653453227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recognizing various surgical tools, actions and phases from surgery videos is an important problem in computer vision with exciting clinical applications. Existing deep-learning-based methods for this problem either process each surgical video as a series of independent images without considering their dependence, or rely on complicated deep learning models to count for dependence of video frames. In this study, we revealed from exploratory data analysis that surgical videos enjoy relatively simple semantic structure, where the presence of surgical phases and tools can be well modeled by a compact hidden Markov model (HMM). Based on this observation, we propose an HMM-stabilized deep learning method for tool presence detection. A wide range of experiments confirm that the proposed approaches achieve better performance with lower training and running costs, and support more flexible ways to construct and utilize training data in scenarios where not all surgery videos of interest are extensively labelled. These results suggest that popular deep learning approaches with over-complicated model structures may suffer from inefficient utilization of data, and integrating ingredients of deep learning and statistical learning wisely may lead to more powerful algorithms that enjoy competitive performance, transparent interpretation and convenient model training simultaneously.
Related papers
- Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
Surgical video-language pretraining faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data.
We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining framework to tackle these issues.
arXiv Detail & Related papers (2024-09-30T22:21:05Z) - SurgMAE: Masked Autoencoders for Long Surgical Video Analysis [4.866110274299399]
Masked autoencoders (MAE) got the attention in self-supervised paradigm for Vision Transformers (ViTs)
In this paper, we first investigate whether MAE can learn transferrable representations in surgical video domain.
We propose SurgMAE, which is a novel architecture with a masking strategy on sampling high-temporal tokens for MAE.
arXiv Detail & Related papers (2023-05-19T06:12:50Z) - Surgical tool classification and localization: results and methods from
the MICCAI 2022 SurgToolLoc challenge [69.91670788430162]
We present the results of the SurgLoc 2022 challenge.
The goal was to leverage tool presence data as weak labels for machine learning models trained to detect tools.
We conclude by discussing these results in the broader context of machine learning and surgical data science.
arXiv Detail & Related papers (2023-05-11T21:44:39Z) - Multi-Modal Unsupervised Pre-Training for Surgical Operating Room
Workflow Analysis [4.866110274299399]
We propose a novel way to fuse the multi-modal data for a single video frame or image.
We treat the multi-modal data as different views to train the model in an unsupervised manner via clustering.
Results show the superior performance of our approach on surgical video activity recognition and semantic segmentation.
arXiv Detail & Related papers (2022-07-16T10:32:27Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - Synthetic and Real Inputs for Tool Segmentation in Robotic Surgery [10.562627972607892]
We show that it may be possible to use robot kinematic data coupled with laparoscopic images to alleviate the labelling problem.
We propose a new deep learning based model for parallel processing of both laparoscopic and simulation images.
arXiv Detail & Related papers (2020-07-17T16:33:33Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
We propose a novel active learning method for cost-effective surgical video analysis.
Specifically, we propose a non-local recurrent convolutional network (NL-RCNet), which introduces non-local block to capture the long-range temporal dependency.
We validate our approach on a large surgical video dataset (Cholec80) by performing surgical workflow recognition task.
arXiv Detail & Related papers (2020-04-21T09:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.