Watch and Learn: Leveraging Expert Knowledge and Language for Surgical Video Understanding
- URL: http://arxiv.org/abs/2503.11392v1
- Date: Fri, 14 Mar 2025 13:36:13 GMT
- Title: Watch and Learn: Leveraging Expert Knowledge and Language for Surgical Video Understanding
- Authors: David Gastager, Ghazal Ghazaei, Constantin Patsch,
- Abstract summary: The lack of datasets hinders the development of accurate and comprehensive workflow analysis solutions.<n>We introduce a novel approach for addressing the sparsity and heterogeneity of data inspired by the human learning procedure of watching experts and understanding their explanations.<n>We present the first comprehensive solution for dense video captioning (DVC) of surgical videos, addressing this task despite the absence of existing datasets in the surgical domain.
- Score: 1.024113475677323
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated surgical workflow analysis is crucial for education, research, and clinical decision-making, but the lack of annotated datasets hinders the development of accurate and comprehensive workflow analysis solutions. We introduce a novel approach for addressing the sparsity and heterogeneity of annotated training data inspired by the human learning procedure of watching experts and understanding their explanations. Our method leverages a video-language model trained on alignment, denoising, and generative tasks to learn short-term spatio-temporal and multimodal representations. A task-specific temporal model is then used to capture relationships across entire videos. To achieve comprehensive video-language understanding in the surgical domain, we introduce a data collection and filtering strategy to construct a large-scale pretraining dataset from educational YouTube videos. We then utilize parameter-efficient fine-tuning by projecting downstream task annotations from publicly available surgical datasets into the language domain. Extensive experiments in two surgical domains demonstrate the effectiveness of our approach, with performance improvements of up to 7% in phase segmentation tasks, 8% in zero-shot phase segmentation, and comparable capabilities to fully-supervised models in few-shot settings. Harnessing our model's capabilities for long-range temporal localization and text generation, we present the first comprehensive solution for dense video captioning (DVC) of surgical videos, addressing this task despite the absence of existing DVC datasets in the surgical domain. We introduce a novel approach to surgical workflow understanding that leverages video-language pretraining, large-scale video pretraining, and optimized fine-tuning. Our method improves performance over state-of-the-art techniques and enables new downstream tasks for surgical video understanding.
Related papers
- Enhancing Surgical Documentation through Multimodal Visual-Temporal Transformers and Generative AI [15.513949299806582]
The automatic summarization of surgical videos is essential for enhancing procedural documentation, supporting surgical training, and facilitating post-operative analysis.
We propose a multi-modal framework that leverages recent advancements in computer vision and large language models to generate comprehensive video summaries.
We evaluate our method on the CholecT50 dataset, using instrument and action annotations from 50 laparoscopic videos.
arXiv Detail & Related papers (2025-04-28T15:46:02Z) - OphCLIP: Hierarchical Retrieval-Augmented Learning for Ophthalmic Surgical Video-Language Pretraining [60.75854609803651]
OphCLIP is a hierarchical retrieval-augmented vision-language pretraining framework for ophthalmic surgical workflow understanding.
OphCLIP learns both fine-grained and long-term visual representations by aligning short video clips with detailed narrative descriptions and full videos with structured titles.
Our OphCLIP also designs a retrieval-augmented pretraining framework to leverage the underexplored large-scale silent surgical procedure videos.
arXiv Detail & Related papers (2024-11-23T02:53:08Z) - Procedure-Aware Surgical Video-language Pretraining with Hierarchical Knowledge Augmentation [51.222684687924215]
Surgical video-language pretraining faces unique challenges due to the knowledge domain gap and the scarcity of multi-modal data.<n>We propose a hierarchical knowledge augmentation approach and a novel Procedure-Encoded Surgical Knowledge-Augmented Video-Language Pretraining framework to tackle these issues.
arXiv Detail & Related papers (2024-09-30T22:21:05Z) - Efficient Surgical Tool Recognition via HMM-Stabilized Deep Learning [25.146476653453227]
We propose an HMM-stabilized deep learning method for tool presence detection.
A range of experiments confirm that the proposed approaches achieve better performance with lower training and running costs.
These results suggest that popular deep learning approaches with over-complicated model structures may suffer from inefficient utilization of data.
arXiv Detail & Related papers (2024-04-07T15:27:35Z) - Learning Multi-modal Representations by Watching Hundreds of Surgical Video Lectures [51.78027546947034]
Recent advancements in surgical computer vision have been driven by vision-only models, which lack language semantics.
We propose leveraging surgical video lectures from e-learning platforms to provide effective vision and language supervisory signals.
We address surgery-specific linguistic challenges using multiple automatic speech recognition systems for text transcriptions.
arXiv Detail & Related papers (2023-07-27T22:38:12Z) - AutoLaparo: A New Dataset of Integrated Multi-tasks for Image-guided
Surgical Automation in Laparoscopic Hysterectomy [42.20922574566824]
We present and release the first integrated dataset with multiple image-based perception tasks to facilitate learning-based automation in hysterectomy surgery.
Our AutoLaparo dataset is developed based on full-length videos of entire hysterectomy procedures.
Specifically, three different yet highly correlated tasks are formulated in the dataset, including surgical workflow recognition, laparoscope motion prediction, and instrument and key anatomy segmentation.
arXiv Detail & Related papers (2022-08-03T13:17:23Z) - CUPID: Adaptive Curation of Pre-training Data for Video-and-Language
Representation Learning [49.18591896085498]
We propose CUPID to bridge the domain gap between source and target data.
CUPID yields new state-of-the-art performance across multiple video-language and video tasks.
arXiv Detail & Related papers (2021-04-01T06:42:16Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
We propose a novel active learning method for cost-effective surgical video analysis.
Specifically, we propose a non-local recurrent convolutional network (NL-RCNet), which introduces non-local block to capture the long-range temporal dependency.
We validate our approach on a large surgical video dataset (Cholec80) by performing surgical workflow recognition task.
arXiv Detail & Related papers (2020-04-21T09:21:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.