論文の概要: PlateSegFL: A Privacy-Preserving License Plate Detection Using Federated Segmentation Learning
- arxiv url: http://arxiv.org/abs/2404.05049v1
- Date: Sun, 7 Apr 2024 19:10:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 16:12:42.923122
- Title: PlateSegFL: A Privacy-Preserving License Plate Detection Using Federated Segmentation Learning
- Title(参考訳): PlateSegFL:フェデレーションセグメンテーション学習を用いたプライバシ保護ライセンスプレート検出
- Authors: Md. Shahriar Rahman Anuvab, Mishkat Sultana, Md. Atif Hossain, Shashwata Das, Suvarthi Chowdhury, Rafeed Rahman, Dibyo Fabian Dofadar, Shahriar Rahman Rana,
- Abstract要約: PlateSegFLがFederated Learning (FL)と共にU-Netベースのセグメンテーションを実装した
携帯電話のような様々なコンピューティングプラットフォームは、標準的な予測モデルの開発に協力することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Automatic License Plate Recognition (ALPR) is an integral component of an intelligent transport system with extensive applications in secure transportation, vehicle-to-vehicle communication, stolen vehicles detection, traffic violations, and traffic flow management. The existing license plate detection system focuses on one-shot learners or pre-trained models that operate with a geometric bounding box, limiting the model's performance. Furthermore, continuous video data streams uploaded to the central server result in network and complexity issues. To combat this, PlateSegFL was introduced, which implements U-Net-based segmentation along with Federated Learning (FL). U-Net is well-suited for multi-class image segmentation tasks because it can analyze a large number of classes and generate a pixel-level segmentation map for each class. Federated Learning is used to reduce the quantity of data required while safeguarding the user's privacy. Different computing platforms, such as mobile phones, are able to collaborate on the development of a standard prediction model where it makes efficient use of one's time; incorporates more diverse data; delivers projections in real-time; and requires no physical effort from the user; resulting around 95% F1 score.
- Abstract(参考訳): 自動ナンバープレート認識(ALPR)は、安全輸送、車両間通信、盗難車両の検出、交通違反、交通フロー管理に広範囲に応用されたインテリジェントトランスポートシステムの不可欠なコンポーネントである。
既存のナンバープレート検出システムは、幾何学的バウンディングボックスで操作するワンショット学習者や事前訓練されたモデルに焦点を当て、モデルの性能を制限している。
さらに、中央サーバにアップロードされた連続的なビデオデータストリームは、ネットワークと複雑性の問題を引き起こします。
これに対抗するため、PlatetSegFLが導入され、Federated Learning (FL)とともにU-Netベースのセグメンテーションを実装した。
U-Netは、多数のクラスを分析し、各クラスのピクセルレベルのセグメンテーションマップを生成することができるため、マルチクラスのイメージセグメンテーションタスクに適している。
フェデレートラーニング(Federated Learning)は、ユーザのプライバシを保護する上で必要なデータ量を削減するために使用される。
携帯電話のような異なるコンピューティングプラットフォームは、自分の時間を効率的に利用し、より多様なデータを取り込み、リアルタイムでプロジェクションを配信し、ユーザーから物理的な労力を要さず、結果として約95%のF1スコアを得る、標準的な予測モデルの開発において協力することができる。
関連論文リスト
- A Training-Free Framework for Video License Plate Tracking and Recognition with Only One-Shot [25.032455444204466]
OneShotLPは、ビデオベースのライセンスプレートの検出と認識のためのトレーニング不要のフレームワークである。
広範なトレーニングデータなしで効果的に機能する機能と、さまざまなライセンスプレートスタイルへの適応性を提供する。
これは、インテリジェントトランスポートシステムにおける多様な現実世界のアプリケーションに事前訓練されたモデルを活用する可能性を強調している。
論文 参考訳(メタデータ) (2024-08-11T08:42:02Z) - FedPylot: Navigating Federated Learning for Real-Time Object Detection in Internet of Vehicles [5.803236995616553]
フェデレートラーニングは、車載ネットワークで洗練された機械学習モデルをトレーニングするための有望なソリューションである。
我々は、フェデレーションオブジェクト検出実験をシミュレートする軽量MPIベースのプロトタイプであるFedPylotを紹介する。
本研究は, 精度, 通信コスト, 推論速度に影響を及ぼし, 自動運転車が直面する課題に対するバランスのとれたアプローチを示す。
論文 参考訳(メタデータ) (2024-06-05T20:06:59Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated Learning(FL)は、さまざまなデータソース上のローカルデータを収集することなく、モデルトレーニングをターゲットとする機械学習パラダイムである。
単一のサーバを使用するStandard FLは、限られた数のユーザしかサポートできないため、学習能力の低下につながる。
本研究では,多数のユーザに対応するために,emphConfederated Learning(CFL)と呼ばれるマルチサーバFLフレームワークを検討する。
論文 参考訳(メタデータ) (2024-02-28T03:27:10Z) - Sparse Federated Training of Object Detection in the Internet of
Vehicles [13.864554148921826]
物体検出は、IoV(Internet of Vehicles)の鍵となる技術の一つである
現在のオブジェクト検出方法は、主に集中的な深層トレーニングに基づいており、エッジデバイスが取得したセンシティブなデータをサーバにアップロードする必要がある。
そこで本研究では,よく訓練されたローカルモデルを中央サーバで共有する,フェデレート学習ベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-07T08:58:41Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
プライバシー保護型UAV画像認識のための半教師付きフェデレートラーニング(SSFL)フレームワークを提案する。
異なるカメラモジュールを使用したUAVによって収集されたローカルデータの数、特徴、分布には大きな違いがある。
本稿では,クライアントがトレーニングに参加する頻度,すなわちFedFreqアグリゲーションルールに基づくアグリゲーションルールを提案する。
論文 参考訳(メタデータ) (2022-01-03T16:49:33Z) - Federated Learning in Vehicular Networks [41.89469856322786]
フェデレートラーニング(FL)フレームワークは、トランスミッションオーバーヘッドを減らすことを目的として、効率的なツールとして導入された。
本稿では,車載ネットワークアプリケーションにおける一元学習(CL)によるFLを用いたインテリジェント交通システムの構築について検討する。
データラベリングやモデルトレーニングといった学習の観点からも,コミュニケーションの観点からも,データレート,信頼性,送信オーバーヘッド,プライバシ,リソース管理といった面から,大きな課題を識別する。
論文 参考訳(メタデータ) (2020-06-02T06:32:59Z) - Key Points Estimation and Point Instance Segmentation Approach for Lane
Detection [65.37887088194022]
本稿では,PINet (Point Instance Network) と呼ばれるトラヒックライン検出手法を提案する。
PINetには、同時にトレーニングされる複数のスタックされた時間ガラスネットワークが含まれている。
PINetはTuSimpleとCulaneのデータセットで競合精度と偽陽性を達成する。
論文 参考訳(メタデータ) (2020-02-16T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。