Active Test-Time Adaptation: Theoretical Analyses and An Algorithm
- URL: http://arxiv.org/abs/2404.05094v1
- Date: Sun, 7 Apr 2024 22:31:34 GMT
- Title: Active Test-Time Adaptation: Theoretical Analyses and An Algorithm
- Authors: Shurui Gui, Xiner Li, Shuiwang Ji,
- Abstract summary: Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings.
We propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting.
- Score: 51.84691955495693
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings. Currently, most TTA methods can only deal with minor shifts and rely heavily on heuristic and empirical studies. To advance TTA under domain shifts, we propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting. We provide a learning theory analysis, demonstrating that incorporating limited labeled test instances enhances overall performances across test domains with a theoretical guarantee. We also present a sample entropy balancing for implementing ATTA while avoiding catastrophic forgetting (CF). We introduce a simple yet effective ATTA algorithm, known as SimATTA, using real-time sample selection techniques. Extensive experimental results confirm consistency with our theoretical analyses and show that the proposed ATTA method yields substantial performance improvements over TTA methods while maintaining efficiency and shares similar effectiveness to the more demanding active domain adaptation (ADA) methods. Our code is available at https://github.com/divelab/ATTA
Related papers
- Realistic Evaluation of Test-Time Adaptation Algorithms: Unsupervised Hyperparameter Selection [1.4530711901349282]
Test-Time Adaptation (TTA) has emerged as a promising strategy for tackling the problem of machine learning model robustness under distribution shifts.
We evaluate existing TTA methods using surrogate-based hp-selection strategies to obtain a more realistic evaluation of their performance.
arXiv Detail & Related papers (2024-07-19T11:58:30Z) - Few Clicks Suffice: Active Test-Time Adaptation for Semantic
Segmentation [14.112999441288615]
Test-time adaptation (TTA) adapts pre-trained models during inference using unlabeled test data.
There is still a significant performance gap between the TTA approaches and their supervised counterparts.
We propose ATASeg framework, which consists of two parts, i.e., model adapter and label annotator.
arXiv Detail & Related papers (2023-12-04T12:16:02Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - Evaluation of Test-Time Adaptation Under Computational Time Constraints [80.40939405129102]
Test Time Adaptation (TTA) methods leverage unlabeled data at test time to adapt to distribution shifts.
Current evaluation protocols overlook the effect of this extra cost, affecting their real-world applicability.
We propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream.
arXiv Detail & Related papers (2023-04-10T18:01:47Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z) - DLTTA: Dynamic Learning Rate for Test-time Adaptation on Cross-domain
Medical Images [56.72015587067494]
We propose a novel dynamic learning rate adjustment method for test-time adaptation, called DLTTA.
Our method achieves effective and fast test-time adaptation with consistent performance improvement over current state-of-the-art test-time adaptation methods.
arXiv Detail & Related papers (2022-05-27T02:34:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.