Evaluation of Test-Time Adaptation Under Computational Time Constraints
- URL: http://arxiv.org/abs/2304.04795v2
- Date: Thu, 23 May 2024 10:38:24 GMT
- Title: Evaluation of Test-Time Adaptation Under Computational Time Constraints
- Authors: Motasem Alfarra, Hani Itani, Alejandro Pardo, Shyma Alhuwaider, Merey Ramazanova, Juan C. Pérez, Zhipeng Cai, Matthias Müller, Bernard Ghanem,
- Abstract summary: Test Time Adaptation (TTA) methods leverage unlabeled data at test time to adapt to distribution shifts.
Current evaluation protocols overlook the effect of this extra cost, affecting their real-world applicability.
We propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream.
- Score: 80.40939405129102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel online evaluation protocol for Test Time Adaptation (TTA) methods, which penalizes slower methods by providing them with fewer samples for adaptation. TTA methods leverage unlabeled data at test time to adapt to distribution shifts. Although many effective methods have been proposed, their impressive performance usually comes at the cost of significantly increased computation budgets. Current evaluation protocols overlook the effect of this extra computation cost, affecting their real-world applicability. To address this issue, we propose a more realistic evaluation protocol for TTA methods, where data is received in an online fashion from a constant-speed data stream, thereby accounting for the method's adaptation speed. We apply our proposed protocol to benchmark several TTA methods on multiple datasets and scenarios. Extensive experiments show that, when accounting for inference speed, simple and fast approaches can outperform more sophisticated but slower methods. For example, SHOT from 2020, outperforms the state-of-the-art method SAR from 2023 in this setting. Our results reveal the importance of developing practical TTA methods that are both accurate and efficient.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
Test-time adaptation (TTA) addresses distribution shifts for streaming test data in unsupervised settings.
We propose the novel problem setting of active test-time adaptation (ATTA) that integrates active learning within the fully TTA setting.
arXiv Detail & Related papers (2024-04-07T22:31:34Z) - pSTarC: Pseudo Source Guided Target Clustering for Fully Test-Time
Adaptation [15.621092104244003]
Test Time Adaptation (TTA) is a pivotal concept in machine learning, enabling models to perform well in real-world scenarios.
We propose a novel approach called pseudo Source guided Target Clustering (pSTarC) addressing the relatively unexplored area of TTA under real-world domain shifts.
arXiv Detail & Related papers (2023-09-02T07:13:47Z) - Benchmarking Test-Time Adaptation against Distribution Shifts in Image
Classification [77.0114672086012]
Test-time adaptation (TTA) is a technique aimed at enhancing the generalization performance of models by leveraging unlabeled samples solely during prediction.
We present a benchmark that systematically evaluates 13 prominent TTA methods and their variants on five widely used image classification datasets.
arXiv Detail & Related papers (2023-07-06T16:59:53Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
Test-Time Adaptation (TTA) has emerged as a promising approach for tackling the robustness challenge under distribution shifts.
We present TTAB, a test-time adaptation benchmark that encompasses ten state-of-the-art algorithms, a diverse array of distribution shifts, and two evaluation protocols.
arXiv Detail & Related papers (2023-06-06T09:35:29Z) - Test-Time Adaptation with Perturbation Consistency Learning [32.58879780726279]
We propose a simple test-time adaptation method to promote the model to make stable predictions for samples with distribution shifts.
Our method can achieve higher or comparable performance with less inference time over strong PLM backbones.
arXiv Detail & Related papers (2023-04-25T12:29:22Z) - Robust Test-Time Adaptation in Dynamic Scenarios [9.475271284789969]
Test-time adaptation (TTA) intends to adapt the pretrained model to test distributions with only unlabeled test data streams.
We elaborate a Robust Test-Time Adaptation (RoTTA) method against the complex data stream in PTTA.
Our method is easy to implement, making it a good choice for rapid deployment.
arXiv Detail & Related papers (2023-03-24T10:19:14Z) - Robust Continual Test-time Adaptation: Instance-aware BN and
Prediction-balanced Memory [58.72445309519892]
We present a new test-time adaptation scheme that is robust against non-i.i.d. test data streams.
Our novelty is mainly two-fold: (a) Instance-Aware Batch Normalization (IABN) that corrects normalization for out-of-distribution samples, and (b) Prediction-balanced Reservoir Sampling (PBRS) that simulates i.i.d. data stream from non-i.i.d. stream in a class-balanced manner.
arXiv Detail & Related papers (2022-08-10T03:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.