論文の概要: LHU-Net: A Light Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2404.05102v1
- Date: Sun, 7 Apr 2024 22:58:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:53:11.311045
- Title: LHU-Net: A Light Hybrid U-Net for Cost-Efficient, High-Performance Volumetric Medical Image Segmentation
- Title(参考訳): LHU-Net: 低コストで高性能な医用医用画像分割のための軽量ハイブリッドU-Net
- Authors: Yousef Sadegheih, Afshin Bozorgpour, Pratibha Kumari, Reza Azad, Dorit Merhof,
- Abstract要約: 医用画像セグメンテーションに最適化された軽量ハイブリッドU-NetアーキテクチャであるLHU-Netを紹介する。
LHU-Netは、より深い層におけるチャネルベースの特徴に焦点を移す前に、初期層における空間的特徴分析を慎重に優先順位付けするように設計されている。
LHU-Netの実装はGitHubのリサーチコミュニティで自由に利用できます。
- 参考スコア(独自算出の注目度): 4.168081528698768
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a result of the rise of Transformer architectures in medical image analysis, specifically in the domain of medical image segmentation, a multitude of hybrid models have been created that merge the advantages of Convolutional Neural Networks (CNNs) and Transformers. These hybrid models have achieved notable success by significantly improving segmentation accuracy. Yet, this progress often comes at the cost of increased model complexity, both in terms of parameters and computational demand. Moreover, many of these models fail to consider the crucial interplay between spatial and channel features, which could further refine and improve segmentation outcomes. To address this, we introduce LHU-Net, a Light Hybrid U-Net architecture optimized for volumetric medical image segmentation. LHU-Net is meticulously designed to prioritize spatial feature analysis in its initial layers before shifting focus to channel-based features in its deeper layers, ensuring a comprehensive feature extraction process. Rigorous evaluation across five benchmark datasets - Synapse, LA, Pancreas, ACDC, and BRaTS 2018 - underscores LHU-Net's superior performance, showcasing its dual capacity for efficiency and accuracy. Notably, LHU-Net sets new performance benchmarks, such as attaining a Dice score of 92.66 on the ACDC dataset, while simultaneously reducing parameters by 85% and quartering the computational load compared to existing state-of-the-art models. Achieved without any reliance on pre-training, additional data, or model ensemble, LHU-Net's effectiveness is further evidenced by its state-of-the-art performance across all evaluated datasets, utilizing fewer than 11 million parameters. This achievement highlights that balancing computational efficiency with high accuracy in medical image segmentation is feasible. Our implementation of LHU-Net is freely accessible to the research community on GitHub.
- Abstract(参考訳): 医用画像解析におけるトランスフォーマーアーキテクチャの台頭,特に医用画像セグメンテーションの分野において,畳み込みニューラルネットワーク(CNN)とトランスフォーマーの利点を融合させるハイブリッドモデルが多数作成されている。
これらのハイブリッドモデルは、セグメンテーションの精度を大幅に改善することで、顕著な成功を収めた。
しかし、この進歩はしばしば、パラメータと計算要求の両方の観点から、モデルの複雑さが増大するコストが伴う。
さらに、これらのモデルの多くは、空間的特徴とチャネル的特徴の間の重要な相互作用を考慮せず、セグメント化の結果をさらに洗練し改善する可能性がある。
そこで本研究では,医療画像のボリューム分割に最適化された軽量ハイブリッドU-NetアーキテクチャであるLHU-Netを紹介する。
LHU-Netは、より深い層におけるチャネルベースの特徴に焦点を移す前に、初期層における空間的特徴分析を慎重に優先順位付けするように設計されている。
Synapse、LA、Pancreas、ACDC、BRaTS 2018という5つのベンチマークデータセットの厳密な評価は、LHU-Netの優れたパフォーマンスを強調し、効率性と正確性を示す。
特に、LHU-Netは、ACDCデータセットでDiceスコア92.66を達成するなど、新しいパフォーマンスベンチマークを設定し、同時にパラメータを85%削減し、既存の最先端モデルと比較して計算負荷を4分の1に減らした。
事前トレーニングや追加データ、モデルアンサンブルに頼らずに、LHU-Netの有効性は、すべての評価データセットの最先端のパフォーマンスによって証明され、1100万以上のパラメータを使用する。
この成果は、医用画像のセグメンテーションにおいて高い精度で計算効率をバランスさせることが可能であることを強調している。
LHU-Netの実装はGitHubのリサーチコミュニティで自由に利用できます。
関連論文リスト
- S3TU-Net: Structured Convolution and Superpixel Transformer for Lung Nodule Segmentation [5.2752693301728355]
マルチ次元空間コネクタとスーパーピクセルベースの視覚変換器を統合したセグメンテーションモデルS3TU-Netを提案する。
S3TU-NetはマルチビューCNN-Transformerハイブリッドアーキテクチャ上に構築されており、スーパーピクセルアルゴリズム、構造化重み付け、空間シフト技術が組み込まれている。
LIDC-IDRIデータセットの実験結果は、S3TU-Netがそれぞれ89.04%、90.73%、90.70%のDSC、精度、IoUを達成したことを示している。
論文 参考訳(メタデータ) (2024-11-19T15:00:18Z) - TransUKAN:Computing-Efficient Hybrid KAN-Transformer for Enhanced Medical Image Segmentation [5.280523424712006]
U-Netは現在、医療画像セグメンテーションの最も広く使われているアーキテクチャである。
我々は、メモリ使用量と計算負荷を減らすためにkanを改善した。
このアプローチは、非線形関係をキャプチャするモデルの能力を高める。
論文 参考訳(メタデータ) (2024-09-23T02:52:49Z) - Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
本稿では,幾何学的アウト・オブ・ディストリビューションデータに直面する場合の,最先端のセマンティックセマンティックセマンティクスモデルの最初の解析を行う。
本稿では, 汎用性を高めるために, 有機移植(Organ Transplantation)と呼ばれる拡張技術を提案する。
我々の拡張技術は、RGBデータに対して最大67%、HSIデータに対して90%のSOAモデル性能を改善し、実際のOODテストデータに対して、分配内パフォーマンスのレベルでのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-27T19:13:15Z) - A lightweight residual network for unsupervised deformable image registration [2.7309692684728617]
本稿では, 並列拡張畳み込みブロックを組み込んだ残差U-Netを提案する。
本手法は患者間およびアトラスに基づくデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-06-14T07:20:49Z) - UNETR++: Delving into Efficient and Accurate 3D Medical Image Segmentation [93.88170217725805]
本稿では,高画質なセグメンテーションマスクと,パラメータ,計算コスト,推論速度の両面での効率性を提供するUNETR++という3次元医用画像セグメンテーション手法を提案する。
我々の設計の核となるのは、空間的およびチャネル的な識別的特徴を効率的に学習する、新しい効率的な対注意ブロック(EPA)の導入である。
Synapse, BTCV, ACDC, BRaTs, Decathlon-Lungの5つのベンチマークで評価した結果, 効率と精度の両面で, コントリビューションの有効性が示された。
論文 参考訳(メタデータ) (2022-12-08T18:59:57Z) - EdgeNeXt: Efficiently Amalgamated CNN-Transformer Architecture for
Mobile Vision Applications [68.35683849098105]
入力テンソルを複数のチャネルグループに分割するSDTAエンコーダを導入する。
1.3Mパラメータを持つEdgeNeXtモデルでは、ImageNet-1Kで71.2%のTop-1精度を実現している。
パラメータ5.6MのEdgeNeXtモデルでは、ImageNet-1Kで79.4%のTop-1精度を実現しています。
論文 参考訳(メタデータ) (2022-06-21T17:59:56Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural
Networks for Hyperspectral Image Classification [5.094623170336122]
スパイキングニューラルネットワーク(SNN)は、重量、膜漏れ、発射閾値を最適化するために量子化対応の勾配降下を訓練する。
トレーニングと推論の両方の間、HSIのアナログ画素値はスパイクトレインに変換することなくSNNの入力層に直接適用される。
3次元および3次元/2次元ハイブリッド畳み込みアーキテクチャ上での3つのHSIデータセットを用いて提案手法の評価を行った。
論文 参考訳(メタデータ) (2021-07-26T06:17:10Z) - KiU-Net: Towards Accurate Segmentation of Biomedical Images using
Over-complete Representations [59.65174244047216]
本稿では,高次元にデータを投影するオーバーコンプリートアーキテクチャ(Ki-Net)を提案する。
このネットワークは、U-Netで拡張されると、小さな解剖学的ランドマークを分割する場合に大幅に改善される。
早期新生児の2次元超音波による脳解剖学的セグメント化の課題について検討した。
論文 参考訳(メタデータ) (2020-06-08T18:59:24Z) - Highly Efficient Salient Object Detection with 100K Parameters [137.74898755102387]
そこで我々は,段階内および複数ステージのマルチスケール機能を効率的に活用するために,フレキシブルな畳み込みモジュールであるOctoConv(gOctConv)を提案する。
我々は、非常に軽量なモデル、すなわちCSNetを構築し、一般的なオブジェクト検出ベンチマークで、約0.2%(100k)の大規模モデルで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-03-12T07:00:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。