Towards Optimal Circuit Size for Sparse Quantum State Preparation
- URL: http://arxiv.org/abs/2404.05147v2
- Date: Tue, 9 Apr 2024 12:06:53 GMT
- Title: Towards Optimal Circuit Size for Sparse Quantum State Preparation
- Authors: Rui Mao, Guojing Tian, Xiaoming Sun,
- Abstract summary: We consider the preparation for $n$-qubit sparse quantum states with $s$ non-zero amplitudes and propose two algorithms.
The first algorithm uses $O(ns/log n + n)$ gates, improving upon previous methods by $O(log n)$.
The second algorithm is tailored for binary strings that exhibit a short Hamiltonian path.
- Score: 10.386753939552872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Compared to general quantum states, the sparse states arise more frequently in the field of quantum computation. In this work, we consider the preparation for $n$-qubit sparse quantum states with $s$ non-zero amplitudes and propose two algorithms. The first algorithm uses $O(ns/\log n + n)$ gates, improving upon previous methods by $O(\log n)$. We further establish a matching lower bound for any algorithm which is not amplitude-aware and employs at most $\operatorname{poly}(n)$ ancillary qubits. The second algorithm is tailored for binary strings that exhibit a short Hamiltonian path. An application is the preparation of $U(1)$-invariant state with $k$ down-spins in a chain of length $n$, including Bethe states, for which our algorithm constructs a circuit of size $O\left(\binom{n}{k}\log n\right)$. This surpasses previous results by $O(n/\log n)$ and is close to the lower bound $O\left(\binom{n}{k}\right)$. Both the two algorithms shrink the existing gap theoretically and provide increasing advantages numerically.
Related papers
- Quantum spectral method for gradient and Hessian estimation [4.193480001271463]
Gradient descent is one of the most basic algorithms for solving continuous optimization problems.
We propose a quantum algorithm that returns an $varepsilon$-approximation of its gradient with query complexity $widetildeO (1/varepsilon)$.
We also propose two quantum algorithms for Hessian estimation, aiming to improve quantum analogs of Newton's method.
arXiv Detail & Related papers (2024-07-04T11:03:48Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Spacetime-Efficient Low-Depth Quantum State Preparation with
Applications [93.56766264306764]
We show that a novel deterministic method for preparing arbitrary quantum states requires fewer quantum resources than previous methods.
We highlight several applications where this ability would be useful, including quantum machine learning, Hamiltonian simulation, and solving linear systems of equations.
arXiv Detail & Related papers (2023-03-03T18:23:20Z) - Basic quantum subroutines: finding multiple marked elements and summing
numbers [1.1265248232450553]
We show how to find all $k$ marked elements in a list of size $N$ using the optimal number $O(sqrtN k)$ of quantum queries.
arXiv Detail & Related papers (2023-02-20T19:11:44Z) - Quantum Resources Required to Block-Encode a Matrix of Classical Data [56.508135743727934]
We provide circuit-level implementations and resource estimates for several methods of block-encoding a dense $Ntimes N$ matrix of classical data to precision $epsilon$.
We examine resource tradeoffs between the different approaches and explore implementations of two separate models of quantum random access memory (QRAM)
Our results go beyond simple query complexity and provide a clear picture into the resource costs when large amounts of classical data are assumed to be accessible to quantum algorithms.
arXiv Detail & Related papers (2022-06-07T18:00:01Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - How to simulate quantum measurement without computing marginals [3.222802562733787]
We describe and analyze algorithms for classically computation measurement of an $n$-qubit quantum state $psi$ in the standard basis.
Our algorithms reduce the sampling task to computing poly(n)$ amplitudes of $n$-qubit states.
arXiv Detail & Related papers (2021-12-15T21:44:05Z) - Low-depth Quantum State Preparation [3.540171881768714]
A crucial subroutine in quantum computing is to load the classical data of $N$ complex numbers into the amplitude of a superposed $n=lceil logNrceil$-qubit state.
Here we investigate this space-time tradeoff in quantum state preparation with classical data.
We propose quantum algorithms with $mathcal O(n2)$ circuit depth to encode any $N$ complex numbers.
arXiv Detail & Related papers (2021-02-15T13:11:43Z) - Low depth algorithms for quantum amplitude estimation [6.148105657815341]
We design and analyze two new low depth algorithms for amplitude estimation (AE)
These algorithms bring quantum speedups for Monte Carlo methods closer to realization.
arXiv Detail & Related papers (2020-12-06T18:39:20Z) - An Optimal Separation of Randomized and Quantum Query Complexity [67.19751155411075]
We prove that for every decision tree, the absolute values of the Fourier coefficients of a given order $ellsqrtbinomdell (1+log n)ell-1,$ sum to at most $cellsqrtbinomdell (1+log n)ell-1,$ where $n$ is the number of variables, $d$ is the tree depth, and $c>0$ is an absolute constant.
arXiv Detail & Related papers (2020-08-24T06:50:57Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.