On the price of exact truthfulness in incentive-compatible online learning with bandit feedback: A regret lower bound for WSU-UX
- URL: http://arxiv.org/abs/2404.05155v1
- Date: Mon, 8 Apr 2024 02:41:32 GMT
- Title: On the price of exact truthfulness in incentive-compatible online learning with bandit feedback: A regret lower bound for WSU-UX
- Authors: Ali Mortazavi, Junhao Lin, Nishant A. Mehta,
- Abstract summary: In one view of the classical game of prediction with expert advice with binary outcomes, each expert maintains an adversarially chosen belief.
We consider a recently introduced, strategic variant of this problem with selfish (reputation-seeking) experts.
We show, via explicit construction of loss sequences, that the algorithm suffers a worst-case $Omega(T2/3)$ lower bound.
- Score: 8.861995276194435
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In one view of the classical game of prediction with expert advice with binary outcomes, in each round, each expert maintains an adversarially chosen belief and honestly reports this belief. We consider a recently introduced, strategic variant of this problem with selfish (reputation-seeking) experts, where each expert strategically reports in order to maximize their expected future reputation based on their belief. In this work, our goal is to design an algorithm for the selfish experts problem that is incentive-compatible (IC, or \emph{truthful}), meaning each expert's best strategy is to report truthfully, while also ensuring the algorithm enjoys sublinear regret with respect to the expert with the best belief. Freeman et al. (2020) recently studied this problem in the full information and bandit settings and obtained truthful, no-regret algorithms by leveraging prior work on wagering mechanisms. While their results under full information match the minimax rate for the classical ("honest experts") problem, the best-known regret for their bandit algorithm WSU-UX is $O(T^{2/3})$, which does not match the minimax rate for the classical ("honest bandits") setting. It was unclear whether the higher regret was an artifact of their analysis or a limitation of WSU-UX. We show, via explicit construction of loss sequences, that the algorithm suffers a worst-case $\Omega(T^{2/3})$ lower bound. Left open is the possibility that a different IC algorithm obtains $O(\sqrt{T})$ regret. Yet, WSU-UX was a natural choice for such an algorithm owing to the limited design room for IC algorithms in this setting.
Related papers
- Incentive-compatible Bandits: Importance Weighting No More [14.344759978208957]
We study the problem of incentive-compatible online learning with bandit feedback.
In this work we propose the first incentive-compatible algorithms that enjoy $O(sqrtKT)$ regret bounds.
arXiv Detail & Related papers (2024-05-10T13:57:13Z) - Nearly Optimal Algorithms for Contextual Dueling Bandits from Adversarial Feedback [58.66941279460248]
Learning from human feedback plays an important role in aligning generative models, such as large language models (LLM)
We study a model within this problem domain--contextual dueling bandits with adversarial feedback, where the true preference label can be flipped by an adversary.
We propose an algorithm namely robust contextual dueling bandit (algo), which is based on uncertainty-weighted maximum likelihood estimation.
arXiv Detail & Related papers (2024-04-16T17:59:55Z) - Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
We propose a Thompson sampling algorithm, named FGTS.CDB, for linear contextual dueling bandits.
At the core of our algorithm is a new Feel-Good exploration term specifically tailored for dueling bandits.
Our algorithm achieves nearly minimax-optimal regret, i.e., $tildemathcalO(dsqrt T)$, where $d$ is the model dimension and $T$ is the time horizon.
arXiv Detail & Related papers (2024-04-09T04:45:18Z) - No-Regret Online Prediction with Strategic Experts [16.54912614895861]
We study a generalization of the online binary prediction with expert advice framework where at each round, the learner is allowed to pick $mgeq 1$ experts from a pool of $K$ experts.
We focus on the setting in which experts act strategically and aim to maximize their influence on the algorithm's predictions by potentially misreporting their beliefs.
Our goal is to design algorithms that satisfy the following two requirements: 1) $textitIncentive-compatible$: Incentivize the experts to report their beliefs truthfully, and 2) $textitNo-regret$: Achieve
arXiv Detail & Related papers (2023-05-24T16:43:21Z) - Streaming Algorithms for Learning with Experts: Deterministic Versus
Robust [62.98860182111096]
In the online learning with experts problem, an algorithm must make a prediction about an outcome on each of $T$ days (or times)
The goal is to make a prediction with the minimum cost, specifically compared to the best expert in the set.
We show a space lower bound of $widetildeOmegaleft(fracnMRTright)$ for any deterministic algorithm that achieves regret $R$ when the best expert makes $M$ mistakes.
arXiv Detail & Related papers (2023-03-03T04:39:53Z) - Private Online Prediction from Experts: Separations and Faster Rates [74.52487417350221]
Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints.
We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries.
arXiv Detail & Related papers (2022-10-24T18:40:19Z) - Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability [59.81339109121384]
We study the $K$ contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes emphpreference-based feedback suggesting that one decision was better than the other.
We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works.
arXiv Detail & Related papers (2021-11-24T07:14:57Z) - Adapting to Misspecification in Contextual Bandits [82.55565343668246]
We introduce a new family of oracle-efficient algorithms for $varepsilon$-misspecified contextual bandits.
We obtain the first algorithm that achieves the optimal $O(dsqrtT + varepsilonsqrtdT)$ regret bound for unknown misspecification level.
arXiv Detail & Related papers (2021-07-12T21:30:41Z) - Optimal anytime regret with two experts [11.959180302329358]
We design the first minimax optimal algorithm for minimizing regret in the anytime setting.
The algorithm is designed by considering a continuous analogue of the regret problem, which is solved using ideas from calculus.
arXiv Detail & Related papers (2020-02-20T20:04:32Z) - Regret Minimization in Stochastic Contextual Dueling Bandits [40.17224226373741]
We consider the problem of $K$-armed dueling bandit in the contextual setting.
We present two algorithms for the setup with respective regret guarantees.
arXiv Detail & Related papers (2020-02-20T06:36:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.