Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging
- URL: http://arxiv.org/abs/2404.05188v2
- Date: Mon, 04 Nov 2024 10:42:01 GMT
- Title: Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging
- Authors: Tianshuo Cong, Delong Ran, Zesen Liu, Xinlei He, Jinyuan Liu, Yichen Gong, Qi Li, Anyu Wang, Xiaoyun Wang,
- Abstract summary: We conduct the first study on the robustness of IP protection methods under model merging scenarios.
Experimental results indicate that current Large Language Model (LLM) watermarking techniques cannot survive in the merged models.
Our research aims to highlight that model merging should be an indispensable consideration in the robustness assessment of model IP protection techniques.
- Score: 25.327483618051378
- License:
- Abstract: Model merging is a promising lightweight model empowerment technique that does not rely on expensive computing devices (e.g., GPUs) or require the collection of specific training data. Instead, it involves editing different upstream model parameters to absorb their downstream task capabilities. However, uncertified model merging can infringe upon the Intellectual Property (IP) rights of the original upstream models. In this paper, we conduct the first study on the robustness of IP protection methods under model merging scenarios. Specifically, we investigate two state-of-the-art IP protection techniques: Quantization Watermarking and Instructional Fingerprint, along with various advanced model merging technologies, such as Task Arithmetic, TIES-MERGING, and so on. Experimental results indicate that current Large Language Model (LLM) watermarking techniques cannot survive in the merged models, whereas model fingerprinting techniques can. Our research aims to highlight that model merging should be an indispensable consideration in the robustness assessment of model IP protection techniques, thereby promoting the healthy development of the open-source LLM community. Our code is available at https://github.com/ThuCCSLab/MergeGuard.
Related papers
- Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
We introduce model kinship, the degree of similarity or relatedness between Large Language Models.
We find that there is a certain relationship between model kinship and the performance gains after model merging.
We propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-16T14:29:29Z) - MergePrint: Robust Fingerprinting against Merging Large Language Models [1.9249287163937978]
We propose a novel fingerprinting method MergePrint that embeds robust fingerprints designed to preserve ownership claims even after model merging.
By optimizing against a pseudo-merged model, MergePrint generates fingerprints that remain detectable after merging.
This approach provides a practical fingerprinting strategy for asserting ownership in cases of misappropriation through model merging.
arXiv Detail & Related papers (2024-10-11T08:00:49Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
Large language models (LLMs) demonstrate general intelligence across a variety of machine learning tasks.
adversaries can still utilize model extraction attacks to steal the model intelligence encoded in model generation.
Watermarking technology offers a promising solution for defending against such attacks by embedding unique identifiers into the model-generated content.
arXiv Detail & Related papers (2024-05-03T06:41:48Z) - Towards Scalable and Robust Model Versioning [30.249607205048125]
Malicious incursions aimed at gaining access to deep learning models are on the rise.
We show how to generate multiple versions of a model that possess different attack properties.
We show theoretically that this can be accomplished by incorporating parameterized hidden distributions into the model training data.
arXiv Detail & Related papers (2024-01-17T19:55:49Z) - Probabilistically Robust Watermarking of Neural Networks [4.332441337407564]
We introduce a novel trigger set-based watermarking approach that demonstrates resilience against functionality stealing attacks.
Our approach does not require additional model training and can be applied to any model architecture.
arXiv Detail & Related papers (2024-01-16T10:32:13Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.