Disrupting Model Merging: A Parameter-Level Defense Without Sacrificing Accuracy
- URL: http://arxiv.org/abs/2503.07661v1
- Date: Sat, 08 Mar 2025 06:08:47 GMT
- Title: Disrupting Model Merging: A Parameter-Level Defense Without Sacrificing Accuracy
- Authors: Wei Junhao, Yu Zhe, Sakuma Jun,
- Abstract summary: Model merging is a technique that combines multiple finetuned models into a single model without additional training.<n>Existing methods such as model watermarking or fingerprinting can only detect merging in hindsight.<n>We propose a first proactive defense against model merging.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model merging is a technique that combines multiple finetuned models into a single model without additional training, allowing a free-rider to cheaply inherit specialized capabilities. This study investigates methodologies to suppress unwanted model merging by free-riders. Existing methods such as model watermarking or fingerprinting can only detect merging in hindsight. In contrast, we propose a first proactive defense against model merging. Specifically, our defense method modifies the model parameters so that the model is disrupted if the model is merged with any other model, while its functionality is kept unchanged if not merged with others. Our approach consists of two modules, rearranging MLP parameters and scaling attention heads, which push the model out of the shared basin in parameter space, causing the merging performance with other models to degrade significantly. We conduct extensive experiments on image classification, image generation, and text classification to demonstrate that our defense severely disrupts merging while retaining the functionality of the post-protect model. Moreover, we analyze potential adaptive attacks and further propose a dropout-based pruning to improve our proposal's robustness.
Related papers
- DMM: Building a Versatile Image Generation Model via Distillation-Based Model Merging [32.97010533998294]
We introduce a style-promptable image generation pipeline which can accurately generate arbitrary-style images under the control of style vectors.
Based on this design, we propose the score distillation based model merging paradigm (DMM), compressing multiple models into a single versatile T2I model.
Our experiments demonstrate that DMM can compactly reorganize the knowledge from multiple teacher models and achieve controllable arbitrary-style generation.
arXiv Detail & Related papers (2025-04-16T15:09:45Z) - Merger-as-a-Stealer: Stealing Targeted PII from Aligned LLMs with Model Merging [49.270050440553575]
We propose textttMerger-as-a-Stealer, a two-stage framework to achieve this attack.<n>First, the attacker fine-tunes a malicious model to force it to respond to any PII-related queries.<n>Second, the attacker inputs direct PII-related queries to the merged model to extract targeted PII.
arXiv Detail & Related papers (2025-02-22T05:34:53Z) - Exploring Model Kinship for Merging Large Language Models [52.01652098827454]
We introduce model kinship, the degree of similarity or relatedness between Large Language Models.
We find that there is a certain relationship between model kinship and the performance gains after model merging.
We propose a new model merging strategy: Top-k Greedy Merging with Model Kinship, which can yield better performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-16T14:29:29Z) - SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Have You Merged My Model? On The Robustness of Large Language Model IP Protection Methods Against Model Merging [25.327483618051378]
We conduct the first study on the robustness of IP protection methods under model merging scenarios.
Experimental results indicate that current Large Language Model (LLM) watermarking techniques cannot survive in the merged models.
Our research aims to highlight that model merging should be an indispensable consideration in the robustness assessment of model IP protection techniques.
arXiv Detail & Related papers (2024-04-08T04:30:33Z) - Understanding Parameter Sharing in Transformers [53.75988363281843]
Previous work on Transformers has focused on sharing parameters in different layers, which can improve the performance of models with limited parameters by increasing model depth.
We show that the success of this approach can be largely attributed to better convergence, with only a small part due to the increased model complexity.
Experiments on 8 machine translation tasks show that our model achieves competitive performance with only half the model complexity of parameter sharing models.
arXiv Detail & Related papers (2023-06-15T10:48:59Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.