論文の概要: Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering
- arxiv url: http://arxiv.org/abs/2404.05211v1
- Date: Mon, 8 Apr 2024 05:50:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:23:43.589014
- Title: Multi-level Graph Subspace Contrastive Learning for Hyperspectral Image Clustering
- Title(参考訳): ハイパースペクトル画像クラスタリングのためのマルチレベルグラフサブスペースコントラスト学習
- Authors: Jingxin Wang, Renxiang Guan, Kainan Gao, Zihao Li, Hao Li, Xianju Li, Chang Tang,
- Abstract要約: 本研究では,HSIクラスタリングのためのマルチレベルグラフサブスペースコントラスト学習(MLGSC)を提案する。
提案したモデルは、Indian Pines、Pavia University、Houston、Xu Zhouの4つの人気のあるHSIデータセットで評価されている。
全体のアキュラシーは97.75%、99.96%、92.28%、95.73%であり、現在の最先端クラスタリング法よりもかなり優れている。
- 参考スコア(独自算出の注目度): 16.027471624621924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hyperspectral image (HSI) clustering is a challenging task due to its high complexity. Despite subspace clustering shows impressive performance for HSI, traditional methods tend to ignore the global-local interaction in HSI data. In this study, we proposed a multi-level graph subspace contrastive learning (MLGSC) for HSI clustering. The model is divided into the following main parts. Graph convolution subspace construction: utilizing spectral and texture feautures to construct two graph convolution views. Local-global graph representation: local graph representations were obtained by step-by-step convolutions and a more representative global graph representation was obtained using an attention-based pooling strategy. Multi-level graph subspace contrastive learning: multi-level contrastive learning was conducted to obtain local-global joint graph representations, to improve the consistency of the positive samples between views, and to obtain more robust graph embeddings. Specifically, graph-level contrastive learning is used to better learn global representations of HSI data. Node-level intra-view and inter-view contrastive learning is designed to learn joint representations of local regions of HSI. The proposed model is evaluated on four popular HSI datasets: Indian Pines, Pavia University, Houston, and Xu Zhou. The overall accuracies are 97.75%, 99.96%, 92.28%, and 95.73%, which significantly outperforms the current state-of-the-art clustering methods.
- Abstract(参考訳): ハイパースペクトル画像(HSI)クラスタリングは、その複雑さが高いため、難しい課題である。
サブスペースクラスタリングはHSIの優れた性能を示すが、従来の手法はHSIデータのグローバルな相互作用を無視する傾向にある。
本研究では,HSIクラスタリングのためのマルチレベルグラフサブスペースコントラスト学習(MLGSC)を提案する。
モデルは以下の主な部分に分けられる。
グラフ畳み込み部分空間構築:2つのグラフ畳み込みビューを構築するためにスペクトルとテクスチャのフェーチャを利用する。
局所グロバルグラフ表現: 局所グラフ表現はステップバイステップの畳み込みによって得られ, より代表的なグローバルグラフ表現は注意に基づくプーリング戦略を用いて得られた。
マルチレベルグラフ部分空間のコントラスト学習: 多レベルコントラスト学習は、局所的・グローバルな共同グラフ表現を得るために行われ、ビュー間の正のサンプルの整合性を改善し、より堅牢なグラフ埋め込みを得るために行われた。
具体的には,HSIデータのグローバル表現をよりよく学習するために,グラフレベルのコントラスト学習を用いる。
ノードレベルの視点内および視点間コントラスト学習は、HSIの局所領域の合同表現を学習するために設計されている。
提案したモデルは、Indian Pines、Pavia University、Houston、Xu Zhouの4つの人気のあるHSIデータセットで評価されている。
全体のアキュラシーは97.75%、99.96%、92.28%、95.73%であり、現在の最先端クラスタリング法よりもかなり優れている。
関連論文リスト
- Multiview Subspace Clustering of Hyperspectral Images based on Graph
Convolutional Networks [12.275530282665578]
本研究では、グラフ畳み込みネットワークに基づくハイスペクトル画像(HSI)のマルチビューサブスペースクラスタリングを提案する。
このモデルは、インディアンパインズ、パヴィア大学、ヒューストンを含む3つの人気のあるHSIデータセットで評価された。
合計で92.38%、93.43%、83.82%の精度を達成し、最先端のクラスタリング法を著しく上回った。
論文 参考訳(メタデータ) (2024-03-03T10:19:18Z) - Contrastive Multi-view Subspace Clustering of Hyperspectral Images based
on Graph Convolutional Networks [14.978666092012856]
サブスペースクラスタリングは、ハイパースペクトル画像のクラスタリングに有効なアプローチである。
本研究では,グラフ畳み込みネットワークに基づくHSIのマルチビューサブスペースクラスタリングを提案する。
提案手法は,HSIのクラスタリング精度を効果的に向上する。
論文 参考訳(メタデータ) (2023-12-11T02:22:10Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
部分的マルチビュークラスタリングの問題を解決するために,拡張自由グラフコントラスト学習フレームワークを提案する。
提案手法は、インスタンスレベルのコントラスト学習と欠落データ推論をクラスタレベルに高め、個々の欠落データがクラスタリングに与える影響を効果的に軽減する。
論文 参考訳(メタデータ) (2022-03-01T02:32:25Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
マルチビュークラスタリングのための効率的かつ効率的なグラフ学習モデルを提案する。
本手法はテンソルシャッテンp-ノルムの最小化により異なるビューのグラフ間のビュー類似性を利用する。
提案アルゴリズムは時間経済であり,安定した結果を得るとともに,データサイズによく対応している。
論文 参考訳(メタデータ) (2021-08-15T13:14:28Z) - Spatial-Spectral Clustering with Anchor Graph for Hyperspectral Image [88.60285937702304]
本稿では、HSIデータクラスタリングのための空間スペクトルクラスタリングとアンカーグラフ(SSCAG)という新しい非監視アプローチを提案する。
提案されたSSCAGは最先端のアプローチと競合する。
論文 参考訳(メタデータ) (2021-04-24T08:09:27Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
本稿では,複数のランダムアンカーグラフアンサンブル学習(RAGE)を用いた空間スペクトルHSI分類手法を提案する。
まず、各選択されたバンドのより記述的な特徴を抽出し、局所的な構造と領域の微妙な変化を保存するローカルバイナリパターンを採用する。
次に,アンカーグラフの構成に適応隣接代入を導入し,計算複雑性を低減した。
論文 参考訳(メタデータ) (2021-03-25T09:31:41Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
HSI分類のための自動グラフ学習法(MGCN-AGL)を用いたマルチレベルグラフ畳み込みネットワーク(GCN)を提案する。
空間的に隣接する領域における重要度を特徴付けるために注意機構を利用することで、最も関連性の高い情報を適応的に組み込んで意思決定を行うことができる。
MGCN-AGLは局所的に生成した表現表現に基づいて画像領域間の長距離依存性を符号化する。
論文 参考訳(メタデータ) (2020-09-19T09:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。