HOEG: A New Approach for Object-Centric Predictive Process Monitoring
- URL: http://arxiv.org/abs/2404.05316v2
- Date: Tue, 16 Apr 2024 15:14:50 GMT
- Title: HOEG: A New Approach for Object-Centric Predictive Process Monitoring
- Authors: Tim K. Smit, Hajo A. Reijers, Xixi Lu,
- Abstract summary: Predictive Process Monitoring focuses on predicting future states of ongoing process executions, such as forecasting the remaining time.
Recent developments in Object-Centric Process Mining have enriched event data with objects and their explicit relations between events.
We propose the Heterogeneous Object Event Graph encoding (HOEG), which integrates events and objects into a graph structure with diverse node types.
We then adopt a heterogeneous Graph Neural Network architecture, which incorporates these diverse object features in prediction tasks.
- Score: 0.6144680854063939
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predictive Process Monitoring focuses on predicting future states of ongoing process executions, such as forecasting the remaining time. Recent developments in Object-Centric Process Mining have enriched event data with objects and their explicit relations between events. To leverage this enriched data, we propose the Heterogeneous Object Event Graph encoding (HOEG), which integrates events and objects into a graph structure with diverse node types. It does so without aggregating object features, thus creating a more nuanced and informative representation. We then adopt a heterogeneous Graph Neural Network architecture, which incorporates these diverse object features in prediction tasks. We evaluate the performance and scalability of HOEG in predicting remaining time, benchmarking it against two established graph-based encodings and two baseline models. Our evaluation uses three Object-Centric Event Logs (OCELs), including one from a real-life process at a major Dutch financial institution. The results indicate that HOEG competes well with existing models and surpasses them when OCELs contain informative object attributes and event-object interactions.
Related papers
- Situational Scene Graph for Structured Human-centric Situation Understanding [15.91717913059569]
We propose a graph-based representation called Situational Scene Graph (SSG) to encode both humanobject-relationships and the corresponding semantic properties.
The semantic details are represented as predefined roles and values inspired by situation frame, which is originally designed to represent a single action.
We will release the code and the dataset soon.
arXiv Detail & Related papers (2024-10-30T09:11:25Z) - EBES: Easy Benchmarking for Event Sequences [17.277513178760348]
Event sequences are common data structures in various real-world domains such as healthcare, finance, and user interaction logs.
Despite advances in temporal data modeling techniques, there is no standardized benchmarks for evaluating their performance on event sequences.
We introduce EBES, a comprehensive benchmarking tool with standardized evaluation scenarios and protocols.
arXiv Detail & Related papers (2024-10-04T13:03:43Z) - Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
Composite Node Message Passing Network (CoNo-Link) is a framework for modeling ultra-long frames information for association.
In addition to the previous method of treating objects as nodes, the network innovatively treats object trajectories as nodes for information interaction.
Our model can learn better predictions on longer-time scales by adding composite nodes.
arXiv Detail & Related papers (2023-12-14T14:00:30Z) - A Framework for Extracting and Encoding Features from Object-Centric
Event Data [0.36748639131154304]
We introduce a framework for extracting and encoding features from object-centric event data.
We calculate features on the object-centric event data, leading to accurate measures.
We use explainable AI in the prediction use cases to show the utility of both the object-centric features and the structure of the sequential and graph-based encoding.
arXiv Detail & Related papers (2022-09-02T16:49:47Z) - Predictive Object-Centric Process Monitoring [10.219621548854343]
This thesis shows that a prediction method utilizing Generative Adversarial Networks (GAN), Long Short-Term Memory (LSTM), and Sequence to Sequence models (Seq2seq) can be augmented with the rich data contained in OCEL.
This thesis provides a web interface to predict the next sequence of activities from user input.
arXiv Detail & Related papers (2022-07-20T16:30:47Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - Relation Regularized Scene Graph Generation [206.76762860019065]
Scene graph generation (SGG) is built on top of detected objects to predict object pairwise visual relations.
We propose a relation regularized network (R2-Net) which can predict whether there is a relationship between two objects.
Our R2-Net can effectively refine object labels and generate scene graphs.
arXiv Detail & Related papers (2022-02-22T11:36:49Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
We propose a message passing graph neural network that explicitly models relational-temporal relations.
We show how our method is able to more effectively model relationships between relevant entities in the scene.
arXiv Detail & Related papers (2021-03-29T14:37:35Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
We present a novel graph-based interactive reasoning model called Interactive Graph (abbr. in-Graph) to infer HOIs.
We construct a new framework to assemble in-Graph models for detecting HOIs, namely in-GraphNet.
Our framework is end-to-end trainable and free from costly annotations like human pose.
arXiv Detail & Related papers (2020-07-14T09:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.