CNN-based Game State Detection for a Foosball Table
- URL: http://arxiv.org/abs/2404.05357v2
- Date: Thu, 16 May 2024 09:12:49 GMT
- Title: CNN-based Game State Detection for a Foosball Table
- Authors: David Hagens, Jan M. Knaup, Elke Hergenröther, Andreas Weinmann,
- Abstract summary: In the game of Foosball, a compact and comprehensive game state description consists of the positional shifts and rotations of the figures and the position of the ball over time.
In this paper, a figure detection system to determine the game state in Foosball is presented.
This dataset is utilized to train Convolutional Neural Network (CNN) based end-to-end regression models to predict the rotations and shifts of each rod.
- Score: 1.612440288407791
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The automation of games using Deep Reinforcement Learning Strategies (DRL) is a well-known challenge in AI research. While for feature extraction in a video game typically the whole image is used, this is hardly practical for many real world games. Instead, using a smaller game state reducing the dimension of the parameter space to include essential parameters only seems to be a promising approach. In the game of Foosball, a compact and comprehensive game state description consists of the positional shifts and rotations of the figures and the position of the ball over time. In particular, velocities and accelerations can be derived from consecutive time samples of the game state. In this paper, a figure detection system to determine the game state in Foosball is presented. We capture a dataset containing the rotations of the rods which were measured using accelerometers and the positional shifts were derived using traditional Computer Vision techniques (in a laboratory setting). This dataset is utilized to train Convolutional Neural Network (CNN) based end-to-end regression models to predict the rotations and shifts of each rod. We present an evaluation of our system using different state-of-the-art CNNs as base architectures for the regression model. We show that our system is able to predict the game state with high accuracy. By providing data for both black and white teams, the presented system is intended to provide the required data for future developments of Imitation Learning techniques w.r.t. to observing human players.
Related papers
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - An Unbiased Look at Datasets for Visuo-Motor Pre-Training [20.094244564603184]
We show that dataset choice is just as important to this paradigm's success.
We observe that traditional vision datasets are surprisingly competitive options for visuo-motor representation learning.
We show that common simulation benchmarks are not a reliable proxy for real world performance.
arXiv Detail & Related papers (2023-10-13T17:59:02Z) - Promptable Game Models: Text-Guided Game Simulation via Masked Diffusion
Models [68.85478477006178]
We present a Promptable Game Model (PGM) for neural video game simulators.
It allows a user to play the game by prompting it with high- and low-level action sequences.
Most captivatingly, our PGM unlocks the director's mode, where the game is played by specifying goals for the agents in the form of a prompt.
Our method significantly outperforms existing neural video game simulators in terms of rendering quality and unlocks applications beyond the capabilities of the current state of the art.
arXiv Detail & Related papers (2023-03-23T17:43:17Z) - One-Shot Neural Fields for 3D Object Understanding [112.32255680399399]
We present a unified and compact scene representation for robotics.
Each object in the scene is depicted by a latent code capturing geometry and appearance.
This representation can be decoded for various tasks such as novel view rendering, 3D reconstruction, and stable grasp prediction.
arXiv Detail & Related papers (2022-10-21T17:33:14Z) - Graph Neural Networks to Predict Sports Outcomes [0.0]
We introduce a sport-agnostic graph-based representation of game states.
We then use our proposed graph representation as input to graph neural networks to predict sports outcomes.
arXiv Detail & Related papers (2022-07-28T14:45:02Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
Video-based person re-identification (re-ID) is an important technique in visual surveillance systems which aims to match video snippets of people captured by different cameras.
Existing methods are mostly based on convolutional neural networks (CNNs), whose building blocks either process local neighbor pixels at a time, or, when 3D convolutions are used to model temporal information, suffer from the misalignment problem caused by person movement.
In this paper, we propose to overcome the limitations of normal convolutions with a human-oriented graph method. Specifically, features located at person joint keypoints are extracted and connected as a spatial-temporal graph
arXiv Detail & Related papers (2021-11-16T08:01:16Z) - Predicting the outcome of team movements -- Player time series analysis
using fuzzy and deep methods for representation learning [0.0]
We provide a framework for the useful encoding of short tactics and space occupations in a more extended sequence of movements or tactical plans.
We discuss the effectiveness of the proposed approach for prediction and recognition tasks on the professional basketball SportVU dataset for the 2015-16 half-season.
arXiv Detail & Related papers (2021-09-13T18:42:37Z) - Machine learning models for DOTA 2 outcomes prediction [8.388178167818635]
This research paper predominantly focuses on building predictive machine and deep learning models to identify the outcome of the Dota 2 MOBA game.
Three models were investigated and compared: Linear Regression (LR), Neural Networks (NN), and a type of recurrent neural network Long Short-Term Memory (LSTM)
arXiv Detail & Related papers (2021-06-03T12:10:26Z) - Emotion Recognition on large video dataset based on Convolutional
Feature Extractor and Recurrent Neural Network [0.2855485723554975]
Our model combines convolutional neural network (CNN) with recurrent neural network (RNN) to predict dimensional emotions on video data.
Experiments are performed on publicly available datasets including the largest modern Aff-Wild2 database.
arXiv Detail & Related papers (2020-06-19T14:54:13Z) - SimAug: Learning Robust Representations from Simulation for Trajectory
Prediction [78.91518036949918]
We propose a novel approach to learn robust representation through augmenting the simulation training data.
We show that SimAug achieves promising results on three real-world benchmarks using zero real training data.
arXiv Detail & Related papers (2020-04-04T21:22:01Z) - Disentangling Controllable Object through Video Prediction Improves
Visual Reinforcement Learning [82.25034245150582]
In many vision-based reinforcement learning problems, the agent controls a movable object in its visual field.
We propose an end-to-end learning framework to disentangle the controllable object from the observation signal.
The disentangled representation is shown to be useful for RL as additional observation channels to the agent.
arXiv Detail & Related papers (2020-02-21T05:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.