CDAD-Net: Bridging Domain Gaps in Generalized Category Discovery
- URL: http://arxiv.org/abs/2404.05366v1
- Date: Mon, 8 Apr 2024 10:05:24 GMT
- Title: CDAD-Net: Bridging Domain Gaps in Generalized Category Discovery
- Authors: Sai Bhargav Rongali, Sarthak Mehrotra, Ankit Jha, Mohamad Hassan N C, Shirsha Bose, Tanisha Gupta, Mainak Singha, Biplab Banerjee,
- Abstract summary: Generalized Category Discovery (GCD) is a tool to cluster unlabeled samples of known and novel classes.
We present Across Domain Generalized Category Discovery (AD-GCD) and bring forth CDAD-NET as a remedy.
CDAD-NET is architected to synchronize potential known class samples across both the labeled (source) and unlabeled (target) datasets.
Experimentally, CDAD-NET eclipses existing literature with a performance increment of 8-15% on three AD-GCD benchmarks we present.
- Score: 9.505699498746976
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Generalized Category Discovery (GCD), we cluster unlabeled samples of known and novel classes, leveraging a training dataset of known classes. A salient challenge arises due to domain shifts between these datasets. To address this, we present a novel setting: Across Domain Generalized Category Discovery (AD-GCD) and bring forth CDAD-NET (Class Discoverer Across Domains) as a remedy. CDAD-NET is architected to synchronize potential known class samples across both the labeled (source) and unlabeled (target) datasets, while emphasizing the distinct categorization of the target data. To facilitate this, we propose an entropy-driven adversarial learning strategy that accounts for the distance distributions of target samples relative to source-domain class prototypes. Parallelly, the discriminative nature of the shared space is upheld through a fusion of three metric learning objectives. In the source domain, our focus is on refining the proximity between samples and their affiliated class prototypes, while in the target domain, we integrate a neighborhood-centric contrastive learning mechanism, enriched with an adept neighborsmining approach. To further accentuate the nuanced feature interrelation among semantically aligned images, we champion the concept of conditional image inpainting, underscoring the premise that semantically analogous images prove more efficacious to the task than their disjointed counterparts. Experimentally, CDAD-NET eclipses existing literature with a performance increment of 8-15% on three AD-GCD benchmarks we present.
Related papers
- Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation [108.40945109477886]
We propose a novel SSDA approach named Graph-based Adaptive Betweenness Clustering (G-ABC) for achieving categorical domain alignment.
Our method outperforms previous state-of-the-art SSDA approaches, demonstrating the superiority of the proposed G-ABC algorithm.
arXiv Detail & Related papers (2024-01-21T09:57:56Z) - Domain Adaptive Few-Shot Open-Set Learning [36.39622440120531]
We propose Domain Adaptive Few-Shot Open Set Recognition (DA-FSOS) and introduce a meta-learning-based architecture named DAFOSNET.
Our training approach ensures that DAFOS-NET can generalize well to new scenarios in the target domain.
We present three benchmarks for DA-FSOS based on the Office-Home, mini-ImageNet/CUB, and DomainNet datasets.
arXiv Detail & Related papers (2023-09-22T12:04:47Z) - Semi-supervised Domain Adaptation via Prototype-based Multi-level
Learning [4.232614032390374]
In semi-supervised domain adaptation (SSDA), a few labeled target samples of each class help the model to transfer knowledge representation from the fully labeled source domain to the target domain.
We propose a Prototype-based Multi-level Learning (ProML) framework to better tap the potential of labeled target samples.
arXiv Detail & Related papers (2023-05-04T10:09:30Z) - Polycentric Clustering and Structural Regularization for Source-free
Unsupervised Domain Adaptation [20.952542421577487]
Source-Free Domain Adaptation (SFDA) aims to solve the domain adaptation problem by transferring the knowledge learned from a pre-trained source model to an unseen target domain.
Most existing methods assign pseudo-labels to the target data by generating feature prototypes.
In this paper, a novel framework named PCSR is proposed to tackle SFDA via a novel intra-class Polycentric Clustering and Structural Regularization strategy.
arXiv Detail & Related papers (2022-10-14T02:20:48Z) - Collaborating Domain-shared and Target-specific Feature Clustering for
Cross-domain 3D Action Recognition [32.430703190988375]
This paper presents a novel approach dubbed CoDT to collaboratively cluster the domain-shared features and target-specific features.
We propose an online clustering algorithm that enables simultaneous promotion of robust pseudo label generation and feature clustering.
We conduct extensive experiments on multiple cross-domain 3D action recognition datasets, and the results demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2022-07-20T09:18:57Z) - Cross-domain Contrastive Learning for Unsupervised Domain Adaptation [108.63914324182984]
Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
arXiv Detail & Related papers (2021-06-10T06:32:30Z) - Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation [85.6961770631173]
In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them.
We propose a novel approach called Cross-domain Adaptive Clustering to address this problem.
arXiv Detail & Related papers (2021-04-19T16:07:32Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation [138.29273453811945]
We present Self-Ensembling with Category-agnostic Clusters (SE-CC) -- a novel architecture that steers domain adaptation with category-agnostic clusters in target domain.
clustering is performed over all the unlabeled target samples to obtain the category-agnostic clusters, which reveal the underlying data space structure peculiar to target domain.
arXiv Detail & Related papers (2020-06-11T16:19:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.