論文の概要: SpeechAlign: Aligning Speech Generation to Human Preferences
- arxiv url: http://arxiv.org/abs/2404.05600v1
- Date: Mon, 8 Apr 2024 15:21:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 13:55:49.099358
- Title: SpeechAlign: Aligning Speech Generation to Human Preferences
- Title(参考訳): SpeechAlign: 人間の嗜好に適応した音声生成
- Authors: Dong Zhang, Zhaowei Li, Shimin Li, Xin Zhang, Pengyu Wang, Yaqian Zhou, Xipeng Qiu,
- Abstract要約: 本稿では,言語モデルと人間の嗜好を一致させる反復的自己改善戦略であるSpeechAlignを紹介する。
我々は、SpeechAlignが分散ギャップを埋め、言語モデルの継続的自己改善を促進することができることを示す。
- 参考スコア(独自算出の注目度): 51.684183257809075
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Speech language models have significantly advanced in generating realistic speech, with neural codec language models standing out. However, the integration of human feedback to align speech outputs to human preferences is often neglected. This paper addresses this gap by first analyzing the distribution gap in codec language models, highlighting how it leads to discrepancies between the training and inference phases, which negatively affects performance. Then we explore leveraging learning from human feedback to bridge the distribution gap. We introduce SpeechAlign, an iterative self-improvement strategy that aligns speech language models to human preferences. SpeechAlign involves constructing a preference codec dataset contrasting golden codec tokens against synthetic tokens, followed by preference optimization to improve the codec language model. This cycle of improvement is carried out iteratively to steadily convert weak models to strong ones. Through both subjective and objective evaluations, we show that SpeechAlign can bridge the distribution gap and facilitating continuous self-improvement of the speech language model. Moreover, SpeechAlign exhibits robust generalization capabilities and works for smaller models. Code and models will be available at https://github.com/0nutation/SpeechGPT.
- Abstract(参考訳): 言語モデルは現実的な音声を生成するために著しく進歩し、ニューラルコーデック言語モデルは際立っている。
しかし、音声出力を人間の好みに合わせるための人間のフィードバックの統合は、しばしば無視される。
本稿では,まずコーデック言語モデルの分布ギャップを解析し,学習と推論の相違が性能に悪影響を及ぼすことを示す。
次に、人間のフィードバックからの学習を活用して、分配ギャップを埋める方法について検討する。
本稿では,言語モデルと人間の嗜好を一致させる反復的自己改善戦略であるSpeechAlignを紹介する。
SpeechAlignは、黄金のコーデックトークンと合成トークンとを対比した好みのコーデックデータセットの構築と、コーデック言語モデルを改善するための好みの最適化を含む。
この改善のサイクルは、弱いモデルを強いモデルに着実に変換するために反復的に実行される。
主観的評価と客観的評価の両方を通して、SpeechAlignは分配ギャップを埋め、言語モデルの継続的な自己改善を促進することができることを示す。
さらに、SpeechAlignは堅牢な一般化機能を示し、より小さなモデルで機能する。
コードとモデルはhttps://github.com/0nutation/SpeechGPTで入手できる。
関連論文リスト
- Collapsed Language Models Promote Fairness [88.48232731113306]
偏りのある言語モデルはトークン表現と単語埋め込みの間に崩壊したアライメントを示す。
我々は,幅広い脱バイアス法において,公平性を効果的に向上する原理的な微調整法を設計する。
論文 参考訳(メタデータ) (2024-10-06T13:09:48Z) - Multi-modal Adversarial Training for Zero-Shot Voice Cloning [9.823246184635103]
実音声特徴と生成音声特徴を条件付きで識別するトランスフォーマーエンコーダデコーダアーキテクチャを提案する。
我々は、FastSpeech2音響モデルに適用し、大規模マルチスピーカーデータセットであるLibriheavyのトレーニングを行うことにより、新しい対角訓練手法を導入する。
本モデルは,音声品質と話者類似度の観点から,ベースラインに対する改善を実現する。
論文 参考訳(メタデータ) (2024-08-28T16:30:41Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
我々は,その極性に関係なく,任意の形式のフィードバックから学習し,最適化が容易な新しい手法であるChain of Hindsightを提案する。
我々は、あらゆる種類のフィードバックを文のシーケンスに変換し、それをモデルを微調整するために使用する。
そうすることで、モデルはフィードバックに基づいて出力を生成するように訓練され、負の属性やエラーを特定し修正する。
論文 参考訳(メタデータ) (2023-02-06T10:28:16Z) - GanLM: Encoder-Decoder Pre-training with an Auxiliary Discriminator [114.8954615026781]
本稿では,補助判別器を導入して,エンコーダ・デコーダ事前学習のためのGANスタイルのモデルを提案する。
GanLMは2つのトレーニング済みの目標 – トークン検出の置き換えとトークン記述の置き換え – でトレーニングされている。
言語生成ベンチマークの実験では、強力な言語理解能力を持つ GanLM が、様々な強力な事前学習言語モデルより優れていることが示されている。
論文 参考訳(メタデータ) (2022-12-20T12:51:11Z) - Are discrete units necessary for Spoken Language Modeling? [10.374092717909603]
音声言語モデリングにおける最近の研究は、テキストラベルなしで生音声から教師なしの言語を学ぶ可能性を示している。
音声言語モデリングの優れた結果を得るためには,離散化が不可欠であることを示す。
また、HuBERTのような個別のターゲットで訓練されたエンドツーエンドモデルは、擬似テキストで訓練された最良の言語モデルと同様の結果が得られることを示す。
論文 参考訳(メタデータ) (2022-03-11T14:14:35Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - Bridging the Modality Gap for Speech-to-Text Translation [57.47099674461832]
エンド・ツー・エンドの音声翻訳は、ある言語における音声を、エンド・ツー・エンドの方法で他の言語におけるテキストに変換することを目的としている。
既存のほとんどの手法では、音響表現と意味情報を同時に学習するために、単一のエンコーダを持つエンコーダ・デコーダ構造を用いる。
本稿では,音声とテキスト間のモダリティギャップを埋めることで,エンドツーエンドのモデル性能を向上させることを目的とした音声翻訳モデルのための音声テキスト適応手法を提案する。
論文 参考訳(メタデータ) (2020-10-28T12:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。